| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							btwnlng1.p | 
							⊢ 𝑃  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							btwnlng1.i | 
							⊢ 𝐼  =  ( Itv ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							btwnlng1.l | 
							⊢ 𝐿  =  ( LineG ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							btwnlng1.g | 
							⊢ ( 𝜑  →  𝐺  ∈  TarskiG )  | 
						
						
							| 5 | 
							
								
							 | 
							btwnlng1.x | 
							⊢ ( 𝜑  →  𝑋  ∈  𝑃 )  | 
						
						
							| 6 | 
							
								
							 | 
							btwnlng1.y | 
							⊢ ( 𝜑  →  𝑌  ∈  𝑃 )  | 
						
						
							| 7 | 
							
								
							 | 
							btwnlng1.z | 
							⊢ ( 𝜑  →  𝑍  ∈  𝑃 )  | 
						
						
							| 8 | 
							
								
							 | 
							btwnlng1.d | 
							⊢ ( 𝜑  →  𝑋  ≠  𝑌 )  | 
						
						
							| 9 | 
							
								
							 | 
							lncom.1 | 
							⊢ ( 𝜑  →  𝑍  ∈  ( 𝑌 𝐿 𝑋 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							3orcomb | 
							⊢ ( ( 𝑍  ∈  ( 𝑋 𝐼 𝑌 )  ∨  𝑋  ∈  ( 𝑍 𝐼 𝑌 )  ∨  𝑌  ∈  ( 𝑋 𝐼 𝑍 ) )  ↔  ( 𝑍  ∈  ( 𝑋 𝐼 𝑌 )  ∨  𝑌  ∈  ( 𝑋 𝐼 𝑍 )  ∨  𝑋  ∈  ( 𝑍 𝐼 𝑌 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 )  | 
						
						
							| 12 | 
							
								1 11 2 4 5 7 6
							 | 
							tgbtwncomb | 
							⊢ ( 𝜑  →  ( 𝑍  ∈  ( 𝑋 𝐼 𝑌 )  ↔  𝑍  ∈  ( 𝑌 𝐼 𝑋 ) ) )  | 
						
						
							| 13 | 
							
								1 11 2 4 5 6 7
							 | 
							tgbtwncomb | 
							⊢ ( 𝜑  →  ( 𝑌  ∈  ( 𝑋 𝐼 𝑍 )  ↔  𝑌  ∈  ( 𝑍 𝐼 𝑋 ) ) )  | 
						
						
							| 14 | 
							
								1 11 2 4 7 5 6
							 | 
							tgbtwncomb | 
							⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝑍 𝐼 𝑌 )  ↔  𝑋  ∈  ( 𝑌 𝐼 𝑍 ) ) )  | 
						
						
							| 15 | 
							
								12 13 14
							 | 
							3orbi123d | 
							⊢ ( 𝜑  →  ( ( 𝑍  ∈  ( 𝑋 𝐼 𝑌 )  ∨  𝑌  ∈  ( 𝑋 𝐼 𝑍 )  ∨  𝑋  ∈  ( 𝑍 𝐼 𝑌 ) )  ↔  ( 𝑍  ∈  ( 𝑌 𝐼 𝑋 )  ∨  𝑌  ∈  ( 𝑍 𝐼 𝑋 )  ∨  𝑋  ∈  ( 𝑌 𝐼 𝑍 ) ) ) )  | 
						
						
							| 16 | 
							
								10 15
							 | 
							bitrid | 
							⊢ ( 𝜑  →  ( ( 𝑍  ∈  ( 𝑋 𝐼 𝑌 )  ∨  𝑋  ∈  ( 𝑍 𝐼 𝑌 )  ∨  𝑌  ∈  ( 𝑋 𝐼 𝑍 ) )  ↔  ( 𝑍  ∈  ( 𝑌 𝐼 𝑋 )  ∨  𝑌  ∈  ( 𝑍 𝐼 𝑋 )  ∨  𝑋  ∈  ( 𝑌 𝐼 𝑍 ) ) ) )  | 
						
						
							| 17 | 
							
								1 3 2 4 5 6 8 7
							 | 
							tgellng | 
							⊢ ( 𝜑  →  ( 𝑍  ∈  ( 𝑋 𝐿 𝑌 )  ↔  ( 𝑍  ∈  ( 𝑋 𝐼 𝑌 )  ∨  𝑋  ∈  ( 𝑍 𝐼 𝑌 )  ∨  𝑌  ∈  ( 𝑋 𝐼 𝑍 ) ) ) )  | 
						
						
							| 18 | 
							
								8
							 | 
							necomd | 
							⊢ ( 𝜑  →  𝑌  ≠  𝑋 )  | 
						
						
							| 19 | 
							
								1 3 2 4 6 5 18 7
							 | 
							tgellng | 
							⊢ ( 𝜑  →  ( 𝑍  ∈  ( 𝑌 𝐿 𝑋 )  ↔  ( 𝑍  ∈  ( 𝑌 𝐼 𝑋 )  ∨  𝑌  ∈  ( 𝑍 𝐼 𝑋 )  ∨  𝑋  ∈  ( 𝑌 𝐼 𝑍 ) ) ) )  | 
						
						
							| 20 | 
							
								16 17 19
							 | 
							3bitr4d | 
							⊢ ( 𝜑  →  ( 𝑍  ∈  ( 𝑋 𝐿 𝑌 )  ↔  𝑍  ∈  ( 𝑌 𝐿 𝑋 ) ) )  | 
						
						
							| 21 | 
							
								9 20
							 | 
							mpbird | 
							⊢ ( 𝜑  →  𝑍  ∈  ( 𝑋 𝐿 𝑌 ) )  |