Step |
Hyp |
Ref |
Expression |
1 |
|
lncon.1 |
⊢ ( 𝑇 ∈ 𝐶 → 𝑆 ∈ ℝ ) |
2 |
|
lncon.2 |
⊢ ( ( 𝑇 ∈ 𝐶 ∧ 𝑦 ∈ ℋ ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑆 · ( normℎ ‘ 𝑦 ) ) ) |
3 |
|
lncon.3 |
⊢ ( 𝑇 ∈ 𝐶 ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
4 |
|
lncon.4 |
⊢ ( 𝑦 ∈ ℋ → ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) |
5 |
|
lncon.5 |
⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) |
6 |
2
|
ralrimiva |
⊢ ( 𝑇 ∈ 𝐶 → ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑆 · ( normℎ ‘ 𝑦 ) ) ) |
7 |
|
oveq1 |
⊢ ( 𝑥 = 𝑆 → ( 𝑥 · ( normℎ ‘ 𝑦 ) ) = ( 𝑆 · ( normℎ ‘ 𝑦 ) ) ) |
8 |
7
|
breq2d |
⊢ ( 𝑥 = 𝑆 → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑆 · ( normℎ ‘ 𝑦 ) ) ) ) |
9 |
8
|
ralbidv |
⊢ ( 𝑥 = 𝑆 → ( ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑆 · ( normℎ ‘ 𝑦 ) ) ) ) |
10 |
9
|
rspcev |
⊢ ( ( 𝑆 ∈ ℝ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑆 · ( normℎ ‘ 𝑦 ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) |
11 |
1 6 10
|
syl2anc |
⊢ ( 𝑇 ∈ 𝐶 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) |
12 |
|
arch |
⊢ ( 𝑥 ∈ ℝ → ∃ 𝑛 ∈ ℕ 𝑥 < 𝑛 ) |
13 |
12
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) → ∃ 𝑛 ∈ ℕ 𝑥 < 𝑛 ) |
14 |
|
nnre |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) |
15 |
|
simplll |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → 𝑥 ∈ ℝ ) |
16 |
|
simpllr |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → 𝑛 ∈ ℝ ) |
17 |
|
normcl |
⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ 𝑦 ) ∈ ℝ ) |
18 |
17
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ 𝑦 ) ∈ ℝ ) |
19 |
|
normge0 |
⊢ ( 𝑦 ∈ ℋ → 0 ≤ ( normℎ ‘ 𝑦 ) ) |
20 |
19
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → 0 ≤ ( normℎ ‘ 𝑦 ) ) |
21 |
|
ltle |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( 𝑥 < 𝑛 → 𝑥 ≤ 𝑛 ) ) |
22 |
21
|
imp |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) → 𝑥 ≤ 𝑛 ) |
23 |
22
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → 𝑥 ≤ 𝑛 ) |
24 |
15 16 18 20 23
|
lemul1ad |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) |
25 |
4
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) |
26 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) → 𝑥 ∈ ℝ ) |
27 |
|
remulcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( normℎ ‘ 𝑦 ) ∈ ℝ ) → ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) |
28 |
26 17 27
|
syl2an |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) |
29 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) → 𝑛 ∈ ℝ ) |
30 |
|
remulcl |
⊢ ( ( 𝑛 ∈ ℝ ∧ ( normℎ ‘ 𝑦 ) ∈ ℝ ) → ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) |
31 |
29 17 30
|
syl2an |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) |
32 |
|
letr |
⊢ ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ∧ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ∧ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ∧ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ) |
33 |
25 28 31 32
|
syl3anc |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ∧ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ) |
34 |
24 33
|
mpan2d |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ) |
35 |
34
|
ralimdva |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) → ( ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) → ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ) |
36 |
35
|
impancom |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) → ( 𝑥 < 𝑛 → ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ) |
37 |
36
|
an32s |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ∧ 𝑛 ∈ ℝ ) → ( 𝑥 < 𝑛 → ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ) |
38 |
14 37
|
sylan2 |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 < 𝑛 → ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ) |
39 |
38
|
reximdva |
⊢ ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) → ( ∃ 𝑛 ∈ ℕ 𝑥 < 𝑛 → ∃ 𝑛 ∈ ℕ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ) |
40 |
13 39
|
mpd |
⊢ ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) → ∃ 𝑛 ∈ ℕ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) |
41 |
40
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) → ∃ 𝑛 ∈ ℕ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) |
42 |
|
simprr |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ) → 𝑧 ∈ ℝ+ ) |
43 |
|
simpll |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ) → 𝑛 ∈ ℕ ) |
44 |
43
|
nnrpd |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ) → 𝑛 ∈ ℝ+ ) |
45 |
42 44
|
rpdivcld |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ) → ( 𝑧 / 𝑛 ) ∈ ℝ+ ) |
46 |
|
simprr |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → 𝑤 ∈ ℋ ) |
47 |
|
simprll |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → 𝑥 ∈ ℋ ) |
48 |
|
hvsubcl |
⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑤 −ℎ 𝑥 ) ∈ ℋ ) |
49 |
46 47 48
|
syl2anc |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( 𝑤 −ℎ 𝑥 ) ∈ ℋ ) |
50 |
|
2fveq3 |
⊢ ( 𝑦 = ( 𝑤 −ℎ 𝑥 ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ) |
51 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑤 −ℎ 𝑥 ) → ( normℎ ‘ 𝑦 ) = ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) |
52 |
51
|
oveq2d |
⊢ ( 𝑦 = ( 𝑤 −ℎ 𝑥 ) → ( 𝑛 · ( normℎ ‘ 𝑦 ) ) = ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ) |
53 |
50 52
|
breq12d |
⊢ ( 𝑦 = ( 𝑤 −ℎ 𝑥 ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ≤ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ) ) |
54 |
53
|
rspcva |
⊢ ( ( ( 𝑤 −ℎ 𝑥 ) ∈ ℋ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ≤ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ) |
55 |
49 54
|
sylan |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ≤ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ) |
56 |
55
|
an32s |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ≤ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ) |
57 |
50
|
eleq1d |
⊢ ( 𝑦 = ( 𝑤 −ℎ 𝑥 ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ↔ ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∈ ℝ ) ) |
58 |
57 4
|
vtoclga |
⊢ ( ( 𝑤 −ℎ 𝑥 ) ∈ ℋ → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∈ ℝ ) |
59 |
49 58
|
syl |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∈ ℝ ) |
60 |
14
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → 𝑛 ∈ ℝ ) |
61 |
|
normcl |
⊢ ( ( 𝑤 −ℎ 𝑥 ) ∈ ℋ → ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ∈ ℝ ) |
62 |
49 61
|
syl |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ∈ ℝ ) |
63 |
|
remulcl |
⊢ ( ( 𝑛 ∈ ℝ ∧ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ∈ ℝ ) → ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∈ ℝ ) |
64 |
60 62 63
|
syl2anc |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∈ ℝ ) |
65 |
|
simprlr |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → 𝑧 ∈ ℝ+ ) |
66 |
65
|
rpred |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → 𝑧 ∈ ℝ ) |
67 |
|
lelttr |
⊢ ( ( ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∈ ℝ ∧ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ≤ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∧ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ) → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ) ) |
68 |
59 64 66 67
|
syl3anc |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ≤ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∧ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ) → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ) ) |
69 |
68
|
adantlr |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ≤ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∧ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ) → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ) ) |
70 |
56 69
|
mpand |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ) ) |
71 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
72 |
71
|
rpregt0d |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) |
73 |
72
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) |
74 |
|
ltmuldiv2 |
⊢ ( ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) → ( ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ↔ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < ( 𝑧 / 𝑛 ) ) ) |
75 |
62 66 73 74
|
syl3anc |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ↔ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < ( 𝑧 / 𝑛 ) ) ) |
76 |
75
|
adantlr |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ↔ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < ( 𝑧 / 𝑛 ) ) ) |
77 |
46 47 5
|
syl2anc |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) |
78 |
77
|
adantlr |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) |
79 |
78
|
fveq2d |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) = ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) ) |
80 |
79
|
breq1d |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ↔ ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
81 |
70 76 80
|
3imtr3d |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < ( 𝑧 / 𝑛 ) → ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
82 |
81
|
anassrs |
⊢ ( ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < ( 𝑧 / 𝑛 ) → ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
83 |
82
|
ralrimiva |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ) → ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < ( 𝑧 / 𝑛 ) → ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
84 |
|
breq2 |
⊢ ( 𝑦 = ( 𝑧 / 𝑛 ) → ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 ↔ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < ( 𝑧 / 𝑛 ) ) ) |
85 |
84
|
rspceaimv |
⊢ ( ( ( 𝑧 / 𝑛 ) ∈ ℝ+ ∧ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < ( 𝑧 / 𝑛 ) → ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
86 |
45 83 85
|
syl2anc |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
87 |
86
|
ralrimivva |
⊢ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
88 |
87
|
rexlimiva |
⊢ ( ∃ 𝑛 ∈ ℕ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) → ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
89 |
88 3
|
sylibr |
⊢ ( ∃ 𝑛 ∈ ℕ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) → 𝑇 ∈ 𝐶 ) |
90 |
41 89
|
syl |
⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) → 𝑇 ∈ 𝐶 ) |
91 |
11 90
|
impbii |
⊢ ( 𝑇 ∈ 𝐶 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) |