Metamath Proof Explorer


Theorem lncvrat

Description: A line covers the atoms it contains. (Contributed by NM, 30-Apr-2012)

Ref Expression
Hypotheses lncvrat.b 𝐵 = ( Base ‘ 𝐾 )
lncvrat.l = ( le ‘ 𝐾 )
lncvrat.c 𝐶 = ( ⋖ ‘ 𝐾 )
lncvrat.a 𝐴 = ( Atoms ‘ 𝐾 )
lncvrat.n 𝑁 = ( Lines ‘ 𝐾 )
lncvrat.m 𝑀 = ( pmap ‘ 𝐾 )
Assertion lncvrat ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴 ) ∧ ( ( 𝑀𝑋 ) ∈ 𝑁𝑃 𝑋 ) ) → 𝑃 𝐶 𝑋 )

Proof

Step Hyp Ref Expression
1 lncvrat.b 𝐵 = ( Base ‘ 𝐾 )
2 lncvrat.l = ( le ‘ 𝐾 )
3 lncvrat.c 𝐶 = ( ⋖ ‘ 𝐾 )
4 lncvrat.a 𝐴 = ( Atoms ‘ 𝐾 )
5 lncvrat.n 𝑁 = ( Lines ‘ 𝐾 )
6 lncvrat.m 𝑀 = ( pmap ‘ 𝐾 )
7 simprl ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴 ) ∧ ( ( 𝑀𝑋 ) ∈ 𝑁𝑃 𝑋 ) ) → ( 𝑀𝑋 ) ∈ 𝑁 )
8 simpl1 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴 ) ∧ ( ( 𝑀𝑋 ) ∈ 𝑁𝑃 𝑋 ) ) → 𝐾 ∈ HL )
9 simpl2 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴 ) ∧ ( ( 𝑀𝑋 ) ∈ 𝑁𝑃 𝑋 ) ) → 𝑋𝐵 )
10 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
11 1 10 4 5 6 isline3 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( ( 𝑀𝑋 ) ∈ 𝑁 ↔ ∃ 𝑞𝐴𝑟𝐴 ( 𝑞𝑟𝑋 = ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) )
12 8 9 11 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴 ) ∧ ( ( 𝑀𝑋 ) ∈ 𝑁𝑃 𝑋 ) ) → ( ( 𝑀𝑋 ) ∈ 𝑁 ↔ ∃ 𝑞𝐴𝑟𝐴 ( 𝑞𝑟𝑋 = ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) )
13 7 12 mpbid ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴 ) ∧ ( ( 𝑀𝑋 ) ∈ 𝑁𝑃 𝑋 ) ) → ∃ 𝑞𝐴𝑟𝐴 ( 𝑞𝑟𝑋 = ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) )
14 simp1l1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴 ) ∧ ( ( 𝑀𝑋 ) ∈ 𝑁𝑃 𝑋 ) ) ∧ ( 𝑞𝐴𝑟𝐴 ) ∧ ( 𝑞𝑟𝑋 = ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) → 𝐾 ∈ HL )
15 simp1l3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴 ) ∧ ( ( 𝑀𝑋 ) ∈ 𝑁𝑃 𝑋 ) ) ∧ ( 𝑞𝐴𝑟𝐴 ) ∧ ( 𝑞𝑟𝑋 = ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) → 𝑃𝐴 )
16 simp2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴 ) ∧ ( ( 𝑀𝑋 ) ∈ 𝑁𝑃 𝑋 ) ) ∧ ( 𝑞𝐴𝑟𝐴 ) ∧ ( 𝑞𝑟𝑋 = ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) → 𝑞𝐴 )
17 simp2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴 ) ∧ ( ( 𝑀𝑋 ) ∈ 𝑁𝑃 𝑋 ) ) ∧ ( 𝑞𝐴𝑟𝐴 ) ∧ ( 𝑞𝑟𝑋 = ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) → 𝑟𝐴 )
18 simp3l ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴 ) ∧ ( ( 𝑀𝑋 ) ∈ 𝑁𝑃 𝑋 ) ) ∧ ( 𝑞𝐴𝑟𝐴 ) ∧ ( 𝑞𝑟𝑋 = ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) → 𝑞𝑟 )
19 simp1rr ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴 ) ∧ ( ( 𝑀𝑋 ) ∈ 𝑁𝑃 𝑋 ) ) ∧ ( 𝑞𝐴𝑟𝐴 ) ∧ ( 𝑞𝑟𝑋 = ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) → 𝑃 𝑋 )
20 simp3r ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴 ) ∧ ( ( 𝑀𝑋 ) ∈ 𝑁𝑃 𝑋 ) ) ∧ ( 𝑞𝐴𝑟𝐴 ) ∧ ( 𝑞𝑟𝑋 = ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) → 𝑋 = ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) )
21 19 20 breqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴 ) ∧ ( ( 𝑀𝑋 ) ∈ 𝑁𝑃 𝑋 ) ) ∧ ( 𝑞𝐴𝑟𝐴 ) ∧ ( 𝑞𝑟𝑋 = ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) → 𝑃 ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) )
22 2 10 3 4 atcvrj2 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑞𝐴𝑟𝐴 ) ∧ ( 𝑞𝑟𝑃 ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) → 𝑃 𝐶 ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) )
23 14 15 16 17 18 21 22 syl132anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴 ) ∧ ( ( 𝑀𝑋 ) ∈ 𝑁𝑃 𝑋 ) ) ∧ ( 𝑞𝐴𝑟𝐴 ) ∧ ( 𝑞𝑟𝑋 = ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) → 𝑃 𝐶 ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) )
24 23 20 breqtrrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴 ) ∧ ( ( 𝑀𝑋 ) ∈ 𝑁𝑃 𝑋 ) ) ∧ ( 𝑞𝐴𝑟𝐴 ) ∧ ( 𝑞𝑟𝑋 = ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) → 𝑃 𝐶 𝑋 )
25 24 3exp ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴 ) ∧ ( ( 𝑀𝑋 ) ∈ 𝑁𝑃 𝑋 ) ) → ( ( 𝑞𝐴𝑟𝐴 ) → ( ( 𝑞𝑟𝑋 = ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) → 𝑃 𝐶 𝑋 ) ) )
26 25 rexlimdvv ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴 ) ∧ ( ( 𝑀𝑋 ) ∈ 𝑁𝑃 𝑋 ) ) → ( ∃ 𝑞𝐴𝑟𝐴 ( 𝑞𝑟𝑋 = ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) → 𝑃 𝐶 𝑋 ) )
27 13 26 mpd ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴 ) ∧ ( ( 𝑀𝑋 ) ∈ 𝑁𝑃 𝑋 ) ) → 𝑃 𝐶 𝑋 )