Metamath Proof Explorer


Theorem lnfn0

Description: The value of a linear Hilbert space functional at zero is zero. Remark in Beran p. 99. (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion lnfn0 ( 𝑇 ∈ LinFn → ( 𝑇 ‘ 0 ) = 0 )

Proof

Step Hyp Ref Expression
1 fveq1 ( 𝑇 = if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) → ( 𝑇 ‘ 0 ) = ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ 0 ) )
2 1 eqeq1d ( 𝑇 = if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) → ( ( 𝑇 ‘ 0 ) = 0 ↔ ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ 0 ) = 0 ) )
3 0lnfn ( ℋ × { 0 } ) ∈ LinFn
4 3 elimel if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ∈ LinFn
5 4 lnfn0i ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ 0 ) = 0
6 2 5 dedth ( 𝑇 ∈ LinFn → ( 𝑇 ‘ 0 ) = 0 )