| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lnfnl.1 |
⊢ 𝑇 ∈ LinFn |
| 2 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
| 3 |
1
|
lnfnfi |
⊢ 𝑇 : ℋ ⟶ ℂ |
| 4 |
3
|
ffvelcdmi |
⊢ ( 0ℎ ∈ ℋ → ( 𝑇 ‘ 0ℎ ) ∈ ℂ ) |
| 5 |
2 4
|
ax-mp |
⊢ ( 𝑇 ‘ 0ℎ ) ∈ ℂ |
| 6 |
5 5
|
pncan3oi |
⊢ ( ( ( 𝑇 ‘ 0ℎ ) + ( 𝑇 ‘ 0ℎ ) ) − ( 𝑇 ‘ 0ℎ ) ) = ( 𝑇 ‘ 0ℎ ) |
| 7 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 8 |
1
|
lnfnli |
⊢ ( ( 1 ∈ ℂ ∧ 0ℎ ∈ ℋ ∧ 0ℎ ∈ ℋ ) → ( 𝑇 ‘ ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) ) = ( ( 1 · ( 𝑇 ‘ 0ℎ ) ) + ( 𝑇 ‘ 0ℎ ) ) ) |
| 9 |
7 2 2 8
|
mp3an |
⊢ ( 𝑇 ‘ ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) ) = ( ( 1 · ( 𝑇 ‘ 0ℎ ) ) + ( 𝑇 ‘ 0ℎ ) ) |
| 10 |
7 2
|
hvmulcli |
⊢ ( 1 ·ℎ 0ℎ ) ∈ ℋ |
| 11 |
|
ax-hvaddid |
⊢ ( ( 1 ·ℎ 0ℎ ) ∈ ℋ → ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) = ( 1 ·ℎ 0ℎ ) ) |
| 12 |
10 11
|
ax-mp |
⊢ ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) = ( 1 ·ℎ 0ℎ ) |
| 13 |
|
ax-hvmulid |
⊢ ( 0ℎ ∈ ℋ → ( 1 ·ℎ 0ℎ ) = 0ℎ ) |
| 14 |
2 13
|
ax-mp |
⊢ ( 1 ·ℎ 0ℎ ) = 0ℎ |
| 15 |
12 14
|
eqtri |
⊢ ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) = 0ℎ |
| 16 |
15
|
fveq2i |
⊢ ( 𝑇 ‘ ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) ) = ( 𝑇 ‘ 0ℎ ) |
| 17 |
9 16
|
eqtr3i |
⊢ ( ( 1 · ( 𝑇 ‘ 0ℎ ) ) + ( 𝑇 ‘ 0ℎ ) ) = ( 𝑇 ‘ 0ℎ ) |
| 18 |
5
|
mullidi |
⊢ ( 1 · ( 𝑇 ‘ 0ℎ ) ) = ( 𝑇 ‘ 0ℎ ) |
| 19 |
18
|
oveq1i |
⊢ ( ( 1 · ( 𝑇 ‘ 0ℎ ) ) + ( 𝑇 ‘ 0ℎ ) ) = ( ( 𝑇 ‘ 0ℎ ) + ( 𝑇 ‘ 0ℎ ) ) |
| 20 |
17 19
|
eqtr3i |
⊢ ( 𝑇 ‘ 0ℎ ) = ( ( 𝑇 ‘ 0ℎ ) + ( 𝑇 ‘ 0ℎ ) ) |
| 21 |
20
|
oveq1i |
⊢ ( ( 𝑇 ‘ 0ℎ ) − ( 𝑇 ‘ 0ℎ ) ) = ( ( ( 𝑇 ‘ 0ℎ ) + ( 𝑇 ‘ 0ℎ ) ) − ( 𝑇 ‘ 0ℎ ) ) |
| 22 |
5
|
subidi |
⊢ ( ( 𝑇 ‘ 0ℎ ) − ( 𝑇 ‘ 0ℎ ) ) = 0 |
| 23 |
21 22
|
eqtr3i |
⊢ ( ( ( 𝑇 ‘ 0ℎ ) + ( 𝑇 ‘ 0ℎ ) ) − ( 𝑇 ‘ 0ℎ ) ) = 0 |
| 24 |
6 23
|
eqtr3i |
⊢ ( 𝑇 ‘ 0ℎ ) = 0 |