Step |
Hyp |
Ref |
Expression |
1 |
|
nmcfnex |
⊢ ( ( 𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ) → ( normfn ‘ 𝑇 ) ∈ ℝ ) |
2 |
1
|
ex |
⊢ ( 𝑇 ∈ LinFn → ( 𝑇 ∈ ContFn → ( normfn ‘ 𝑇 ) ∈ ℝ ) ) |
3 |
|
simpr |
⊢ ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) → ( normfn ‘ 𝑇 ) ∈ ℝ ) |
4 |
|
nmbdfnlb |
⊢ ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) |
5 |
4
|
3expa |
⊢ ( ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) |
6 |
5
|
ralrimiva |
⊢ ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) → ∀ 𝑦 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) |
7 |
|
oveq1 |
⊢ ( 𝑥 = ( normfn ‘ 𝑇 ) → ( 𝑥 · ( normℎ ‘ 𝑦 ) ) = ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) |
8 |
7
|
breq2d |
⊢ ( 𝑥 = ( normfn ‘ 𝑇 ) → ( ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ↔ ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) ) |
9 |
8
|
ralbidv |
⊢ ( 𝑥 = ( normfn ‘ 𝑇 ) → ( ∀ 𝑦 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) ) |
10 |
9
|
rspcev |
⊢ ( ( ( normfn ‘ 𝑇 ) ∈ ℝ ∧ ∀ 𝑦 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) |
11 |
3 6 10
|
syl2anc |
⊢ ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) |
12 |
11
|
ex |
⊢ ( 𝑇 ∈ LinFn → ( ( normfn ‘ 𝑇 ) ∈ ℝ → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ) |
13 |
|
lnfncon |
⊢ ( 𝑇 ∈ LinFn → ( 𝑇 ∈ ContFn ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ) |
14 |
12 13
|
sylibrd |
⊢ ( 𝑇 ∈ LinFn → ( ( normfn ‘ 𝑇 ) ∈ ℝ → 𝑇 ∈ ContFn ) ) |
15 |
2 14
|
impbid |
⊢ ( 𝑇 ∈ LinFn → ( 𝑇 ∈ ContFn ↔ ( normfn ‘ 𝑇 ) ∈ ℝ ) ) |