Metamath Proof Explorer


Theorem lnfnconi

Description: A condition equivalent to " T is continuous" when T is linear. Theorem 3.5(iii) of Beran p. 99. (Contributed by NM, 14-Feb-2006) (Proof shortened by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypothesis lnfncon.1 𝑇 ∈ LinFn
Assertion lnfnconi ( 𝑇 ∈ ContFn ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( abs ‘ ( 𝑇𝑦 ) ) ≤ ( 𝑥 · ( norm𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 lnfncon.1 𝑇 ∈ LinFn
2 nmcfnex ( ( 𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ) → ( normfn𝑇 ) ∈ ℝ )
3 1 2 mpan ( 𝑇 ∈ ContFn → ( normfn𝑇 ) ∈ ℝ )
4 nmcfnlb ( ( 𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( 𝑇𝑦 ) ) ≤ ( ( normfn𝑇 ) · ( norm𝑦 ) ) )
5 1 4 mp3an1 ( ( 𝑇 ∈ ContFn ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( 𝑇𝑦 ) ) ≤ ( ( normfn𝑇 ) · ( norm𝑦 ) ) )
6 1 lnfnfi 𝑇 : ℋ ⟶ ℂ
7 elcnfn ( 𝑇 ∈ ContFn ↔ ( 𝑇 : ℋ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑦 → ( abs ‘ ( ( 𝑇𝑤 ) − ( 𝑇𝑥 ) ) ) < 𝑧 ) ) )
8 6 7 mpbiran ( 𝑇 ∈ ContFn ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑦 → ( abs ‘ ( ( 𝑇𝑤 ) − ( 𝑇𝑥 ) ) ) < 𝑧 ) )
9 6 ffvelrni ( 𝑦 ∈ ℋ → ( 𝑇𝑦 ) ∈ ℂ )
10 9 abscld ( 𝑦 ∈ ℋ → ( abs ‘ ( 𝑇𝑦 ) ) ∈ ℝ )
11 1 lnfnsubi ( ( 𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑤 𝑥 ) ) = ( ( 𝑇𝑤 ) − ( 𝑇𝑥 ) ) )
12 3 5 8 10 11 lnconi ( 𝑇 ∈ ContFn ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( abs ‘ ( 𝑇𝑦 ) ) ≤ ( 𝑥 · ( norm𝑦 ) ) )