Step |
Hyp |
Ref |
Expression |
1 |
|
lnfncon.1 |
⊢ 𝑇 ∈ LinFn |
2 |
|
nmcfnex |
⊢ ( ( 𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ) → ( normfn ‘ 𝑇 ) ∈ ℝ ) |
3 |
1 2
|
mpan |
⊢ ( 𝑇 ∈ ContFn → ( normfn ‘ 𝑇 ) ∈ ℝ ) |
4 |
|
nmcfnlb |
⊢ ( ( 𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) |
5 |
1 4
|
mp3an1 |
⊢ ( ( 𝑇 ∈ ContFn ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) |
6 |
1
|
lnfnfi |
⊢ 𝑇 : ℋ ⟶ ℂ |
7 |
|
elcnfn |
⊢ ( 𝑇 ∈ ContFn ↔ ( 𝑇 : ℋ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( abs ‘ ( ( 𝑇 ‘ 𝑤 ) − ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) ) |
8 |
6 7
|
mpbiran |
⊢ ( 𝑇 ∈ ContFn ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( abs ‘ ( ( 𝑇 ‘ 𝑤 ) − ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
9 |
6
|
ffvelrni |
⊢ ( 𝑦 ∈ ℋ → ( 𝑇 ‘ 𝑦 ) ∈ ℂ ) |
10 |
9
|
abscld |
⊢ ( 𝑦 ∈ ℋ → ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) |
11 |
1
|
lnfnsubi |
⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑤 ) − ( 𝑇 ‘ 𝑥 ) ) ) |
12 |
3 5 8 10 11
|
lnconi |
⊢ ( 𝑇 ∈ ContFn ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) |