Metamath Proof Explorer


Theorem lnfnf

Description: A linear Hilbert space functional is a functional. (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion lnfnf ( 𝑇 ∈ LinFn → 𝑇 : ℋ ⟶ ℂ )

Proof

Step Hyp Ref Expression
1 ellnfn ( 𝑇 ∈ LinFn ↔ ( 𝑇 : ℋ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 · ( 𝑇𝑦 ) ) + ( 𝑇𝑧 ) ) ) )
2 1 simplbi ( 𝑇 ∈ LinFn → 𝑇 : ℋ ⟶ ℂ )