Description: A linear Hilbert space functional is a functional. (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | lnfnf | ⊢ ( 𝑇 ∈ LinFn → 𝑇 : ℋ ⟶ ℂ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellnfn | ⊢ ( 𝑇 ∈ LinFn ↔ ( 𝑇 : ℋ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) + ( 𝑇 ‘ 𝑧 ) ) ) ) | |
2 | 1 | simplbi | ⊢ ( 𝑇 ∈ LinFn → 𝑇 : ℋ ⟶ ℂ ) |