Description: Basic property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lnfnl.1 | ⊢ 𝑇 ∈ LinFn | |
| Assertion | lnfnli | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ) = ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + ( 𝑇 ‘ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnfnl.1 | ⊢ 𝑇 ∈ LinFn | |
| 2 | lnfnl | ⊢ ( ( ( 𝑇 ∈ LinFn ∧ 𝐴 ∈ ℂ ) ∧ ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ) = ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + ( 𝑇 ‘ 𝐶 ) ) ) | |
| 3 | 1 2 | mpanl1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ) = ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + ( 𝑇 ‘ 𝐶 ) ) ) |
| 4 | 3 | 3impb | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ) = ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + ( 𝑇 ‘ 𝐶 ) ) ) |