| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq1 | ⊢ ( 𝑇  =  if ( 𝑇  ∈  LinFn ,  𝑇 ,  (  ℋ  ×  { 0 } ) )  →  ( 𝑇 ‘ ( 𝐴  ·ℎ  𝐵 ) )  =  ( if ( 𝑇  ∈  LinFn ,  𝑇 ,  (  ℋ  ×  { 0 } ) ) ‘ ( 𝐴  ·ℎ  𝐵 ) ) ) | 
						
							| 2 |  | fveq1 | ⊢ ( 𝑇  =  if ( 𝑇  ∈  LinFn ,  𝑇 ,  (  ℋ  ×  { 0 } ) )  →  ( 𝑇 ‘ 𝐵 )  =  ( if ( 𝑇  ∈  LinFn ,  𝑇 ,  (  ℋ  ×  { 0 } ) ) ‘ 𝐵 ) ) | 
						
							| 3 | 2 | oveq2d | ⊢ ( 𝑇  =  if ( 𝑇  ∈  LinFn ,  𝑇 ,  (  ℋ  ×  { 0 } ) )  →  ( 𝐴  ·  ( 𝑇 ‘ 𝐵 ) )  =  ( 𝐴  ·  ( if ( 𝑇  ∈  LinFn ,  𝑇 ,  (  ℋ  ×  { 0 } ) ) ‘ 𝐵 ) ) ) | 
						
							| 4 | 1 3 | eqeq12d | ⊢ ( 𝑇  =  if ( 𝑇  ∈  LinFn ,  𝑇 ,  (  ℋ  ×  { 0 } ) )  →  ( ( 𝑇 ‘ ( 𝐴  ·ℎ  𝐵 ) )  =  ( 𝐴  ·  ( 𝑇 ‘ 𝐵 ) )  ↔  ( if ( 𝑇  ∈  LinFn ,  𝑇 ,  (  ℋ  ×  { 0 } ) ) ‘ ( 𝐴  ·ℎ  𝐵 ) )  =  ( 𝐴  ·  ( if ( 𝑇  ∈  LinFn ,  𝑇 ,  (  ℋ  ×  { 0 } ) ) ‘ 𝐵 ) ) ) ) | 
						
							| 5 | 4 | imbi2d | ⊢ ( 𝑇  =  if ( 𝑇  ∈  LinFn ,  𝑇 ,  (  ℋ  ×  { 0 } ) )  →  ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ )  →  ( 𝑇 ‘ ( 𝐴  ·ℎ  𝐵 ) )  =  ( 𝐴  ·  ( 𝑇 ‘ 𝐵 ) ) )  ↔  ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ )  →  ( if ( 𝑇  ∈  LinFn ,  𝑇 ,  (  ℋ  ×  { 0 } ) ) ‘ ( 𝐴  ·ℎ  𝐵 ) )  =  ( 𝐴  ·  ( if ( 𝑇  ∈  LinFn ,  𝑇 ,  (  ℋ  ×  { 0 } ) ) ‘ 𝐵 ) ) ) ) ) | 
						
							| 6 |  | 0lnfn | ⊢ (  ℋ  ×  { 0 } )  ∈  LinFn | 
						
							| 7 | 6 | elimel | ⊢ if ( 𝑇  ∈  LinFn ,  𝑇 ,  (  ℋ  ×  { 0 } ) )  ∈  LinFn | 
						
							| 8 | 7 | lnfnmuli | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ )  →  ( if ( 𝑇  ∈  LinFn ,  𝑇 ,  (  ℋ  ×  { 0 } ) ) ‘ ( 𝐴  ·ℎ  𝐵 ) )  =  ( 𝐴  ·  ( if ( 𝑇  ∈  LinFn ,  𝑇 ,  (  ℋ  ×  { 0 } ) ) ‘ 𝐵 ) ) ) | 
						
							| 9 | 5 8 | dedth | ⊢ ( 𝑇  ∈  LinFn  →  ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ )  →  ( 𝑇 ‘ ( 𝐴  ·ℎ  𝐵 ) )  =  ( 𝐴  ·  ( 𝑇 ‘ 𝐵 ) ) ) ) | 
						
							| 10 | 9 | 3impib | ⊢ ( ( 𝑇  ∈  LinFn  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ )  →  ( 𝑇 ‘ ( 𝐴  ·ℎ  𝐵 ) )  =  ( 𝐴  ·  ( 𝑇 ‘ 𝐵 ) ) ) |