Step |
Hyp |
Ref |
Expression |
1 |
|
fveq1 |
⊢ ( 𝑇 = if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) → ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ ( 𝐴 ·ℎ 𝐵 ) ) ) |
2 |
|
fveq1 |
⊢ ( 𝑇 = if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) → ( 𝑇 ‘ 𝐵 ) = ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝐵 ) ) |
3 |
2
|
oveq2d |
⊢ ( 𝑇 = if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) → ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) = ( 𝐴 · ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝐵 ) ) ) |
4 |
1 3
|
eqeq12d |
⊢ ( 𝑇 = if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) → ( ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ↔ ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝐴 · ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝐵 ) ) ) ) |
5 |
4
|
imbi2d |
⊢ ( 𝑇 = if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝐴 · ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝐵 ) ) ) ) ) |
6 |
|
0lnfn |
⊢ ( ℋ × { 0 } ) ∈ LinFn |
7 |
6
|
elimel |
⊢ if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ∈ LinFn |
8 |
7
|
lnfnmuli |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝐴 · ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝐵 ) ) ) |
9 |
5 8
|
dedth |
⊢ ( 𝑇 ∈ LinFn → ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ) ) |
10 |
9
|
3impib |
⊢ ( ( 𝑇 ∈ LinFn ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ) |