Step |
Hyp |
Ref |
Expression |
1 |
|
lnfnl.1 |
⊢ 𝑇 ∈ LinFn |
2 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
3 |
1
|
lnfnaddmuli |
⊢ ( ( - 1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( ( 𝑇 ‘ 𝐴 ) + ( - 1 · ( 𝑇 ‘ 𝐵 ) ) ) ) |
4 |
2 3
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( ( 𝑇 ‘ 𝐴 ) + ( - 1 · ( 𝑇 ‘ 𝐵 ) ) ) ) |
5 |
|
hvsubval |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
6 |
5
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) = ( 𝑇 ‘ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) ) |
7 |
1
|
lnfnfi |
⊢ 𝑇 : ℋ ⟶ ℂ |
8 |
7
|
ffvelrni |
⊢ ( 𝐴 ∈ ℋ → ( 𝑇 ‘ 𝐴 ) ∈ ℂ ) |
9 |
7
|
ffvelrni |
⊢ ( 𝐵 ∈ ℋ → ( 𝑇 ‘ 𝐵 ) ∈ ℂ ) |
10 |
|
mulm1 |
⊢ ( ( 𝑇 ‘ 𝐵 ) ∈ ℂ → ( - 1 · ( 𝑇 ‘ 𝐵 ) ) = - ( 𝑇 ‘ 𝐵 ) ) |
11 |
10
|
oveq2d |
⊢ ( ( 𝑇 ‘ 𝐵 ) ∈ ℂ → ( ( 𝑇 ‘ 𝐴 ) + ( - 1 · ( 𝑇 ‘ 𝐵 ) ) ) = ( ( 𝑇 ‘ 𝐴 ) + - ( 𝑇 ‘ 𝐵 ) ) ) |
12 |
11
|
adantl |
⊢ ( ( ( 𝑇 ‘ 𝐴 ) ∈ ℂ ∧ ( 𝑇 ‘ 𝐵 ) ∈ ℂ ) → ( ( 𝑇 ‘ 𝐴 ) + ( - 1 · ( 𝑇 ‘ 𝐵 ) ) ) = ( ( 𝑇 ‘ 𝐴 ) + - ( 𝑇 ‘ 𝐵 ) ) ) |
13 |
|
negsub |
⊢ ( ( ( 𝑇 ‘ 𝐴 ) ∈ ℂ ∧ ( 𝑇 ‘ 𝐵 ) ∈ ℂ ) → ( ( 𝑇 ‘ 𝐴 ) + - ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) − ( 𝑇 ‘ 𝐵 ) ) ) |
14 |
12 13
|
eqtr2d |
⊢ ( ( ( 𝑇 ‘ 𝐴 ) ∈ ℂ ∧ ( 𝑇 ‘ 𝐵 ) ∈ ℂ ) → ( ( 𝑇 ‘ 𝐴 ) − ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) + ( - 1 · ( 𝑇 ‘ 𝐵 ) ) ) ) |
15 |
8 9 14
|
syl2an |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) − ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) + ( - 1 · ( 𝑇 ‘ 𝐵 ) ) ) ) |
16 |
4 6 15
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) − ( 𝑇 ‘ 𝐵 ) ) ) |