Metamath Proof Explorer


Theorem lnid

Description: Identity law for points on lines. Theorem 4.18 of Schwabhauser p. 38. (Contributed by Thierry Arnoux, 28-Apr-2019)

Ref Expression
Hypotheses tglngval.p 𝑃 = ( Base ‘ 𝐺 )
tglngval.l 𝐿 = ( LineG ‘ 𝐺 )
tglngval.i 𝐼 = ( Itv ‘ 𝐺 )
tglngval.g ( 𝜑𝐺 ∈ TarskiG )
tglngval.x ( 𝜑𝑋𝑃 )
tglngval.y ( 𝜑𝑌𝑃 )
tgcolg.z ( 𝜑𝑍𝑃 )
lnxfr.r = ( cgrG ‘ 𝐺 )
lnxfr.a ( 𝜑𝐴𝑃 )
lnxfr.b ( 𝜑𝐵𝑃 )
lnxfr.d = ( dist ‘ 𝐺 )
lnid.1 ( 𝜑𝑋𝑌 )
lnid.2 ( 𝜑 → ( 𝑌 ∈ ( 𝑋 𝐿 𝑍 ) ∨ 𝑋 = 𝑍 ) )
lnid.3 ( 𝜑 → ( 𝑋 𝑍 ) = ( 𝑋 𝐴 ) )
lnid.4 ( 𝜑 → ( 𝑌 𝑍 ) = ( 𝑌 𝐴 ) )
Assertion lnid ( 𝜑𝑍 = 𝐴 )

Proof

Step Hyp Ref Expression
1 tglngval.p 𝑃 = ( Base ‘ 𝐺 )
2 tglngval.l 𝐿 = ( LineG ‘ 𝐺 )
3 tglngval.i 𝐼 = ( Itv ‘ 𝐺 )
4 tglngval.g ( 𝜑𝐺 ∈ TarskiG )
5 tglngval.x ( 𝜑𝑋𝑃 )
6 tglngval.y ( 𝜑𝑌𝑃 )
7 tgcolg.z ( 𝜑𝑍𝑃 )
8 lnxfr.r = ( cgrG ‘ 𝐺 )
9 lnxfr.a ( 𝜑𝐴𝑃 )
10 lnxfr.b ( 𝜑𝐵𝑃 )
11 lnxfr.d = ( dist ‘ 𝐺 )
12 lnid.1 ( 𝜑𝑋𝑌 )
13 lnid.2 ( 𝜑 → ( 𝑌 ∈ ( 𝑋 𝐿 𝑍 ) ∨ 𝑋 = 𝑍 ) )
14 lnid.3 ( 𝜑 → ( 𝑋 𝑍 ) = ( 𝑋 𝐴 ) )
15 lnid.4 ( 𝜑 → ( 𝑌 𝑍 ) = ( 𝑌 𝐴 ) )
16 1 2 3 4 5 6 7 8 7 9 11 12 13 14 15 lncgr ( 𝜑 → ( 𝑍 𝑍 ) = ( 𝑍 𝐴 ) )
17 16 eqcomd ( 𝜑 → ( 𝑍 𝐴 ) = ( 𝑍 𝑍 ) )
18 1 11 3 4 7 9 7 17 axtgcgrid ( 𝜑𝑍 = 𝐴 )