Metamath Proof Explorer


Theorem lnmfg

Description: A Noetherian left module is finitely generated. (Contributed by Stefan O'Rear, 12-Dec-2014)

Ref Expression
Assertion lnmfg ( 𝑀 ∈ LNoeM → 𝑀 ∈ LFinGen )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 )
2 1 ressid ( 𝑀 ∈ LNoeM → ( 𝑀s ( Base ‘ 𝑀 ) ) = 𝑀 )
3 lnmlmod ( 𝑀 ∈ LNoeM → 𝑀 ∈ LMod )
4 eqid ( LSubSp ‘ 𝑀 ) = ( LSubSp ‘ 𝑀 )
5 1 4 lss1 ( 𝑀 ∈ LMod → ( Base ‘ 𝑀 ) ∈ ( LSubSp ‘ 𝑀 ) )
6 3 5 syl ( 𝑀 ∈ LNoeM → ( Base ‘ 𝑀 ) ∈ ( LSubSp ‘ 𝑀 ) )
7 eqid ( 𝑀s ( Base ‘ 𝑀 ) ) = ( 𝑀s ( Base ‘ 𝑀 ) )
8 4 7 lnmlssfg ( ( 𝑀 ∈ LNoeM ∧ ( Base ‘ 𝑀 ) ∈ ( LSubSp ‘ 𝑀 ) ) → ( 𝑀s ( Base ‘ 𝑀 ) ) ∈ LFinGen )
9 6 8 mpdan ( 𝑀 ∈ LNoeM → ( 𝑀s ( Base ‘ 𝑀 ) ) ∈ LFinGen )
10 2 9 eqeltrrd ( 𝑀 ∈ LNoeM → 𝑀 ∈ LFinGen )