Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
2 |
1
|
ressid |
⊢ ( 𝑀 ∈ LNoeM → ( 𝑀 ↾s ( Base ‘ 𝑀 ) ) = 𝑀 ) |
3 |
|
lnmlmod |
⊢ ( 𝑀 ∈ LNoeM → 𝑀 ∈ LMod ) |
4 |
|
eqid |
⊢ ( LSubSp ‘ 𝑀 ) = ( LSubSp ‘ 𝑀 ) |
5 |
1 4
|
lss1 |
⊢ ( 𝑀 ∈ LMod → ( Base ‘ 𝑀 ) ∈ ( LSubSp ‘ 𝑀 ) ) |
6 |
3 5
|
syl |
⊢ ( 𝑀 ∈ LNoeM → ( Base ‘ 𝑀 ) ∈ ( LSubSp ‘ 𝑀 ) ) |
7 |
|
eqid |
⊢ ( 𝑀 ↾s ( Base ‘ 𝑀 ) ) = ( 𝑀 ↾s ( Base ‘ 𝑀 ) ) |
8 |
4 7
|
lnmlssfg |
⊢ ( ( 𝑀 ∈ LNoeM ∧ ( Base ‘ 𝑀 ) ∈ ( LSubSp ‘ 𝑀 ) ) → ( 𝑀 ↾s ( Base ‘ 𝑀 ) ) ∈ LFinGen ) |
9 |
6 8
|
mpdan |
⊢ ( 𝑀 ∈ LNoeM → ( 𝑀 ↾s ( Base ‘ 𝑀 ) ) ∈ LFinGen ) |
10 |
2 9
|
eqeltrrd |
⊢ ( 𝑀 ∈ LNoeM → 𝑀 ∈ LFinGen ) |