| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brlmic |
⊢ ( 𝑅 ≃𝑚 𝑆 ↔ ( 𝑅 LMIso 𝑆 ) ≠ ∅ ) |
| 2 |
|
n0 |
⊢ ( ( 𝑅 LMIso 𝑆 ) ≠ ∅ ↔ ∃ 𝑎 𝑎 ∈ ( 𝑅 LMIso 𝑆 ) ) |
| 3 |
1 2
|
bitri |
⊢ ( 𝑅 ≃𝑚 𝑆 ↔ ∃ 𝑎 𝑎 ∈ ( 𝑅 LMIso 𝑆 ) ) |
| 4 |
|
lmimlmhm |
⊢ ( 𝑎 ∈ ( 𝑅 LMIso 𝑆 ) → 𝑎 ∈ ( 𝑅 LMHom 𝑆 ) ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝑎 ∈ ( 𝑅 LMIso 𝑆 ) ∧ 𝑅 ∈ LNoeM ) → 𝑎 ∈ ( 𝑅 LMHom 𝑆 ) ) |
| 6 |
|
simpr |
⊢ ( ( 𝑎 ∈ ( 𝑅 LMIso 𝑆 ) ∧ 𝑅 ∈ LNoeM ) → 𝑅 ∈ LNoeM ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 9 |
7 8
|
lmimf1o |
⊢ ( 𝑎 ∈ ( 𝑅 LMIso 𝑆 ) → 𝑎 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) |
| 10 |
|
f1ofo |
⊢ ( 𝑎 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) → 𝑎 : ( Base ‘ 𝑅 ) –onto→ ( Base ‘ 𝑆 ) ) |
| 11 |
|
forn |
⊢ ( 𝑎 : ( Base ‘ 𝑅 ) –onto→ ( Base ‘ 𝑆 ) → ran 𝑎 = ( Base ‘ 𝑆 ) ) |
| 12 |
9 10 11
|
3syl |
⊢ ( 𝑎 ∈ ( 𝑅 LMIso 𝑆 ) → ran 𝑎 = ( Base ‘ 𝑆 ) ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝑎 ∈ ( 𝑅 LMIso 𝑆 ) ∧ 𝑅 ∈ LNoeM ) → ran 𝑎 = ( Base ‘ 𝑆 ) ) |
| 14 |
8
|
lnmepi |
⊢ ( ( 𝑎 ∈ ( 𝑅 LMHom 𝑆 ) ∧ 𝑅 ∈ LNoeM ∧ ran 𝑎 = ( Base ‘ 𝑆 ) ) → 𝑆 ∈ LNoeM ) |
| 15 |
5 6 13 14
|
syl3anc |
⊢ ( ( 𝑎 ∈ ( 𝑅 LMIso 𝑆 ) ∧ 𝑅 ∈ LNoeM ) → 𝑆 ∈ LNoeM ) |
| 16 |
|
islmim2 |
⊢ ( 𝑎 ∈ ( 𝑅 LMIso 𝑆 ) ↔ ( 𝑎 ∈ ( 𝑅 LMHom 𝑆 ) ∧ ◡ 𝑎 ∈ ( 𝑆 LMHom 𝑅 ) ) ) |
| 17 |
16
|
simprbi |
⊢ ( 𝑎 ∈ ( 𝑅 LMIso 𝑆 ) → ◡ 𝑎 ∈ ( 𝑆 LMHom 𝑅 ) ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝑎 ∈ ( 𝑅 LMIso 𝑆 ) ∧ 𝑆 ∈ LNoeM ) → ◡ 𝑎 ∈ ( 𝑆 LMHom 𝑅 ) ) |
| 19 |
|
simpr |
⊢ ( ( 𝑎 ∈ ( 𝑅 LMIso 𝑆 ) ∧ 𝑆 ∈ LNoeM ) → 𝑆 ∈ LNoeM ) |
| 20 |
|
dfdm4 |
⊢ dom 𝑎 = ran ◡ 𝑎 |
| 21 |
|
f1odm |
⊢ ( 𝑎 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) → dom 𝑎 = ( Base ‘ 𝑅 ) ) |
| 22 |
9 21
|
syl |
⊢ ( 𝑎 ∈ ( 𝑅 LMIso 𝑆 ) → dom 𝑎 = ( Base ‘ 𝑅 ) ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝑎 ∈ ( 𝑅 LMIso 𝑆 ) ∧ 𝑆 ∈ LNoeM ) → dom 𝑎 = ( Base ‘ 𝑅 ) ) |
| 24 |
20 23
|
eqtr3id |
⊢ ( ( 𝑎 ∈ ( 𝑅 LMIso 𝑆 ) ∧ 𝑆 ∈ LNoeM ) → ran ◡ 𝑎 = ( Base ‘ 𝑅 ) ) |
| 25 |
7
|
lnmepi |
⊢ ( ( ◡ 𝑎 ∈ ( 𝑆 LMHom 𝑅 ) ∧ 𝑆 ∈ LNoeM ∧ ran ◡ 𝑎 = ( Base ‘ 𝑅 ) ) → 𝑅 ∈ LNoeM ) |
| 26 |
18 19 24 25
|
syl3anc |
⊢ ( ( 𝑎 ∈ ( 𝑅 LMIso 𝑆 ) ∧ 𝑆 ∈ LNoeM ) → 𝑅 ∈ LNoeM ) |
| 27 |
15 26
|
impbida |
⊢ ( 𝑎 ∈ ( 𝑅 LMIso 𝑆 ) → ( 𝑅 ∈ LNoeM ↔ 𝑆 ∈ LNoeM ) ) |
| 28 |
27
|
exlimiv |
⊢ ( ∃ 𝑎 𝑎 ∈ ( 𝑅 LMIso 𝑆 ) → ( 𝑅 ∈ LNoeM ↔ 𝑆 ∈ LNoeM ) ) |
| 29 |
3 28
|
sylbi |
⊢ ( 𝑅 ≃𝑚 𝑆 → ( 𝑅 ∈ LNoeM ↔ 𝑆 ∈ LNoeM ) ) |