Metamath Proof Explorer


Theorem lnmlssfg

Description: A submodule of Noetherian module is finitely generated. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Hypotheses lnmlssfg.s 𝑆 = ( LSubSp ‘ 𝑀 )
lnmlssfg.r 𝑅 = ( 𝑀s 𝑈 )
Assertion lnmlssfg ( ( 𝑀 ∈ LNoeM ∧ 𝑈𝑆 ) → 𝑅 ∈ LFinGen )

Proof

Step Hyp Ref Expression
1 lnmlssfg.s 𝑆 = ( LSubSp ‘ 𝑀 )
2 lnmlssfg.r 𝑅 = ( 𝑀s 𝑈 )
3 1 islnm ( 𝑀 ∈ LNoeM ↔ ( 𝑀 ∈ LMod ∧ ∀ 𝑎𝑆 ( 𝑀s 𝑎 ) ∈ LFinGen ) )
4 3 simprbi ( 𝑀 ∈ LNoeM → ∀ 𝑎𝑆 ( 𝑀s 𝑎 ) ∈ LFinGen )
5 oveq2 ( 𝑎 = 𝑈 → ( 𝑀s 𝑎 ) = ( 𝑀s 𝑈 ) )
6 5 2 eqtr4di ( 𝑎 = 𝑈 → ( 𝑀s 𝑎 ) = 𝑅 )
7 6 eleq1d ( 𝑎 = 𝑈 → ( ( 𝑀s 𝑎 ) ∈ LFinGen ↔ 𝑅 ∈ LFinGen ) )
8 7 rspcv ( 𝑈𝑆 → ( ∀ 𝑎𝑆 ( 𝑀s 𝑎 ) ∈ LFinGen → 𝑅 ∈ LFinGen ) )
9 4 8 mpan9 ( ( 𝑀 ∈ LNoeM ∧ 𝑈𝑆 ) → 𝑅 ∈ LFinGen )