Description: A submodule of Noetherian module is finitely generated. (Contributed by Stefan O'Rear, 1-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lnmlssfg.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑀 ) | |
lnmlssfg.r | ⊢ 𝑅 = ( 𝑀 ↾s 𝑈 ) | ||
Assertion | lnmlssfg | ⊢ ( ( 𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆 ) → 𝑅 ∈ LFinGen ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnmlssfg.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑀 ) | |
2 | lnmlssfg.r | ⊢ 𝑅 = ( 𝑀 ↾s 𝑈 ) | |
3 | 1 | islnm | ⊢ ( 𝑀 ∈ LNoeM ↔ ( 𝑀 ∈ LMod ∧ ∀ 𝑎 ∈ 𝑆 ( 𝑀 ↾s 𝑎 ) ∈ LFinGen ) ) |
4 | 3 | simprbi | ⊢ ( 𝑀 ∈ LNoeM → ∀ 𝑎 ∈ 𝑆 ( 𝑀 ↾s 𝑎 ) ∈ LFinGen ) |
5 | oveq2 | ⊢ ( 𝑎 = 𝑈 → ( 𝑀 ↾s 𝑎 ) = ( 𝑀 ↾s 𝑈 ) ) | |
6 | 5 2 | eqtr4di | ⊢ ( 𝑎 = 𝑈 → ( 𝑀 ↾s 𝑎 ) = 𝑅 ) |
7 | 6 | eleq1d | ⊢ ( 𝑎 = 𝑈 → ( ( 𝑀 ↾s 𝑎 ) ∈ LFinGen ↔ 𝑅 ∈ LFinGen ) ) |
8 | 7 | rspcv | ⊢ ( 𝑈 ∈ 𝑆 → ( ∀ 𝑎 ∈ 𝑆 ( 𝑀 ↾s 𝑎 ) ∈ LFinGen → 𝑅 ∈ LFinGen ) ) |
9 | 4 8 | mpan9 | ⊢ ( ( 𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆 ) → 𝑅 ∈ LFinGen ) |