Step |
Hyp |
Ref |
Expression |
1 |
|
lnmlssfg.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑀 ) |
2 |
|
lnmlssfg.r |
⊢ 𝑅 = ( 𝑀 ↾s 𝑈 ) |
3 |
|
lnmlmod |
⊢ ( 𝑀 ∈ LNoeM → 𝑀 ∈ LMod ) |
4 |
2 1
|
lsslmod |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑅 ∈ LMod ) |
5 |
3 4
|
sylan |
⊢ ( ( 𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆 ) → 𝑅 ∈ LMod ) |
6 |
2
|
oveq1i |
⊢ ( 𝑅 ↾s 𝑎 ) = ( ( 𝑀 ↾s 𝑈 ) ↾s 𝑎 ) |
7 |
|
simplr |
⊢ ( ( ( 𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑅 ) ) → 𝑈 ∈ 𝑆 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
9 |
|
eqid |
⊢ ( LSubSp ‘ 𝑅 ) = ( LSubSp ‘ 𝑅 ) |
10 |
8 9
|
lssss |
⊢ ( 𝑎 ∈ ( LSubSp ‘ 𝑅 ) → 𝑎 ⊆ ( Base ‘ 𝑅 ) ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑅 ) ) → 𝑎 ⊆ ( Base ‘ 𝑅 ) ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
13 |
12 1
|
lssss |
⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ⊆ ( Base ‘ 𝑀 ) ) |
14 |
2 12
|
ressbas2 |
⊢ ( 𝑈 ⊆ ( Base ‘ 𝑀 ) → 𝑈 = ( Base ‘ 𝑅 ) ) |
15 |
13 14
|
syl |
⊢ ( 𝑈 ∈ 𝑆 → 𝑈 = ( Base ‘ 𝑅 ) ) |
16 |
15
|
ad2antlr |
⊢ ( ( ( 𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑅 ) ) → 𝑈 = ( Base ‘ 𝑅 ) ) |
17 |
11 16
|
sseqtrrd |
⊢ ( ( ( 𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑅 ) ) → 𝑎 ⊆ 𝑈 ) |
18 |
|
ressabs |
⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑎 ⊆ 𝑈 ) → ( ( 𝑀 ↾s 𝑈 ) ↾s 𝑎 ) = ( 𝑀 ↾s 𝑎 ) ) |
19 |
7 17 18
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑅 ) ) → ( ( 𝑀 ↾s 𝑈 ) ↾s 𝑎 ) = ( 𝑀 ↾s 𝑎 ) ) |
20 |
6 19
|
syl5eq |
⊢ ( ( ( 𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑅 ) ) → ( 𝑅 ↾s 𝑎 ) = ( 𝑀 ↾s 𝑎 ) ) |
21 |
|
simpll |
⊢ ( ( ( 𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑅 ) ) → 𝑀 ∈ LNoeM ) |
22 |
2 1 9
|
lsslss |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑎 ∈ ( LSubSp ‘ 𝑅 ) ↔ ( 𝑎 ∈ 𝑆 ∧ 𝑎 ⊆ 𝑈 ) ) ) |
23 |
3 22
|
sylan |
⊢ ( ( 𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆 ) → ( 𝑎 ∈ ( LSubSp ‘ 𝑅 ) ↔ ( 𝑎 ∈ 𝑆 ∧ 𝑎 ⊆ 𝑈 ) ) ) |
24 |
23
|
simprbda |
⊢ ( ( ( 𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑅 ) ) → 𝑎 ∈ 𝑆 ) |
25 |
|
eqid |
⊢ ( 𝑀 ↾s 𝑎 ) = ( 𝑀 ↾s 𝑎 ) |
26 |
1 25
|
lnmlssfg |
⊢ ( ( 𝑀 ∈ LNoeM ∧ 𝑎 ∈ 𝑆 ) → ( 𝑀 ↾s 𝑎 ) ∈ LFinGen ) |
27 |
21 24 26
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑅 ) ) → ( 𝑀 ↾s 𝑎 ) ∈ LFinGen ) |
28 |
20 27
|
eqeltrd |
⊢ ( ( ( 𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( LSubSp ‘ 𝑅 ) ) → ( 𝑅 ↾s 𝑎 ) ∈ LFinGen ) |
29 |
28
|
ralrimiva |
⊢ ( ( 𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆 ) → ∀ 𝑎 ∈ ( LSubSp ‘ 𝑅 ) ( 𝑅 ↾s 𝑎 ) ∈ LFinGen ) |
30 |
9
|
islnm |
⊢ ( 𝑅 ∈ LNoeM ↔ ( 𝑅 ∈ LMod ∧ ∀ 𝑎 ∈ ( LSubSp ‘ 𝑅 ) ( 𝑅 ↾s 𝑎 ) ∈ LFinGen ) ) |
31 |
5 29 30
|
sylanbrc |
⊢ ( ( 𝑀 ∈ LNoeM ∧ 𝑈 ∈ 𝑆 ) → 𝑅 ∈ LNoeM ) |