Step |
Hyp |
Ref |
Expression |
1 |
|
lnnat.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
2 |
|
lnnat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → 𝐾 ∈ HL ) |
4 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → 𝑃 ∈ 𝐴 ) |
5 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
6 |
|
eqid |
⊢ ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 ) |
7 |
5 6 2
|
atcvr0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) → ( 0. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) 𝑃 ) |
8 |
3 4 7
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ( 0. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) 𝑃 ) |
9 |
1 6 2
|
atcvr1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ≠ 𝑄 ↔ 𝑃 ( ⋖ ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) |
10 |
9
|
biimpa |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → 𝑃 ( ⋖ ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) |
11 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
13 |
12 5
|
op0cl |
⊢ ( 𝐾 ∈ OP → ( 0. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
14 |
3 11 13
|
3syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ( 0. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
15 |
12 2
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
16 |
4 15
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
17 |
3
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → 𝐾 ∈ Lat ) |
18 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → 𝑄 ∈ 𝐴 ) |
19 |
12 2
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
20 |
18 19
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
21 |
12 1
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
22 |
17 16 20 21
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
23 |
12 6
|
cvrntr |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 0. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 0. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) 𝑃 ∧ 𝑃 ( ⋖ ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) → ¬ ( 0. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) |
24 |
3 14 16 22 23
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ( ( ( 0. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) 𝑃 ∧ 𝑃 ( ⋖ ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) → ¬ ( 0. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) |
25 |
8 10 24
|
mp2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ¬ ( 0. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) |
26 |
|
simpll1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐴 ) → 𝐾 ∈ HL ) |
27 |
5 6 2
|
atcvr0 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐴 ) → ( 0. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) |
28 |
26 27
|
sylancom |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐴 ) → ( 0. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) |
29 |
25 28
|
mtand |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ¬ ( 𝑃 ∨ 𝑄 ) ∈ 𝐴 ) |
30 |
29
|
ex |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ≠ 𝑄 → ¬ ( 𝑃 ∨ 𝑄 ) ∈ 𝐴 ) ) |
31 |
1 2
|
hlatjidm |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑃 ) = 𝑃 ) |
32 |
31
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑃 ) = 𝑃 ) |
33 |
|
simp2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝑃 ∈ 𝐴 ) |
34 |
32 33
|
eqeltrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑃 ) ∈ 𝐴 ) |
35 |
|
oveq2 |
⊢ ( 𝑃 = 𝑄 → ( 𝑃 ∨ 𝑃 ) = ( 𝑃 ∨ 𝑄 ) ) |
36 |
35
|
eleq1d |
⊢ ( 𝑃 = 𝑄 → ( ( 𝑃 ∨ 𝑃 ) ∈ 𝐴 ↔ ( 𝑃 ∨ 𝑄 ) ∈ 𝐴 ) ) |
37 |
34 36
|
syl5ibcom |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 = 𝑄 → ( 𝑃 ∨ 𝑄 ) ∈ 𝐴 ) ) |
38 |
37
|
necon3bd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( ¬ ( 𝑃 ∨ 𝑄 ) ∈ 𝐴 → 𝑃 ≠ 𝑄 ) ) |
39 |
30 38
|
impbid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ≠ 𝑄 ↔ ¬ ( 𝑃 ∨ 𝑄 ) ∈ 𝐴 ) ) |