| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lnnat.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 2 |  | lnnat.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 3 |  | simpl1 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  →  𝐾  ∈  HL ) | 
						
							| 4 |  | simpl2 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  →  𝑃  ∈  𝐴 ) | 
						
							| 5 |  | eqid | ⊢ ( 0. ‘ 𝐾 )  =  ( 0. ‘ 𝐾 ) | 
						
							| 6 |  | eqid | ⊢ (  ⋖  ‘ 𝐾 )  =  (  ⋖  ‘ 𝐾 ) | 
						
							| 7 | 5 6 2 | atcvr0 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴 )  →  ( 0. ‘ 𝐾 ) (  ⋖  ‘ 𝐾 ) 𝑃 ) | 
						
							| 8 | 3 4 7 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  →  ( 0. ‘ 𝐾 ) (  ⋖  ‘ 𝐾 ) 𝑃 ) | 
						
							| 9 | 1 6 2 | atcvr1 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ≠  𝑄  ↔  𝑃 (  ⋖  ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) ) | 
						
							| 10 | 9 | biimpa | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  →  𝑃 (  ⋖  ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) | 
						
							| 11 |  | hlop | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OP ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 13 | 12 5 | op0cl | ⊢ ( 𝐾  ∈  OP  →  ( 0. ‘ 𝐾 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 14 | 3 11 13 | 3syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  →  ( 0. ‘ 𝐾 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 15 | 12 2 | atbase | ⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 16 | 4 15 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  →  𝑃  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 17 | 3 | hllatd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  →  𝐾  ∈  Lat ) | 
						
							| 18 |  | simpl3 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  →  𝑄  ∈  𝐴 ) | 
						
							| 19 | 12 2 | atbase | ⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  →  𝑄  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 21 | 12 1 | latjcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑃  ∈  ( Base ‘ 𝐾 )  ∧  𝑄  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 22 | 17 16 20 21 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 23 | 12 6 | cvrntr | ⊢ ( ( 𝐾  ∈  HL  ∧  ( ( 0. ‘ 𝐾 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑃  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( ( 0. ‘ 𝐾 ) (  ⋖  ‘ 𝐾 ) 𝑃  ∧  𝑃 (  ⋖  ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  →  ¬  ( 0. ‘ 𝐾 ) (  ⋖  ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) ) | 
						
							| 24 | 3 14 16 22 23 | syl13anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  →  ( ( ( 0. ‘ 𝐾 ) (  ⋖  ‘ 𝐾 ) 𝑃  ∧  𝑃 (  ⋖  ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  →  ¬  ( 0. ‘ 𝐾 ) (  ⋖  ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) ) | 
						
							| 25 | 8 10 24 | mp2and | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  →  ¬  ( 0. ‘ 𝐾 ) (  ⋖  ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) | 
						
							| 26 |  | simpll1 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑄 )  ∈  𝐴 )  →  𝐾  ∈  HL ) | 
						
							| 27 | 5 6 2 | atcvr0 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∨  𝑄 )  ∈  𝐴 )  →  ( 0. ‘ 𝐾 ) (  ⋖  ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) | 
						
							| 28 | 26 27 | sylancom | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑄 )  ∈  𝐴 )  →  ( 0. ‘ 𝐾 ) (  ⋖  ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) | 
						
							| 29 | 25 28 | mtand | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  →  ¬  ( 𝑃  ∨  𝑄 )  ∈  𝐴 ) | 
						
							| 30 | 29 | ex | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ≠  𝑄  →  ¬  ( 𝑃  ∨  𝑄 )  ∈  𝐴 ) ) | 
						
							| 31 | 1 2 | hlatjidm | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴 )  →  ( 𝑃  ∨  𝑃 )  =  𝑃 ) | 
						
							| 32 | 31 | 3adant3 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ∨  𝑃 )  =  𝑃 ) | 
						
							| 33 |  | simp2 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  𝑃  ∈  𝐴 ) | 
						
							| 34 | 32 33 | eqeltrd | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ∨  𝑃 )  ∈  𝐴 ) | 
						
							| 35 |  | oveq2 | ⊢ ( 𝑃  =  𝑄  →  ( 𝑃  ∨  𝑃 )  =  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 36 | 35 | eleq1d | ⊢ ( 𝑃  =  𝑄  →  ( ( 𝑃  ∨  𝑃 )  ∈  𝐴  ↔  ( 𝑃  ∨  𝑄 )  ∈  𝐴 ) ) | 
						
							| 37 | 34 36 | syl5ibcom | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  =  𝑄  →  ( 𝑃  ∨  𝑄 )  ∈  𝐴 ) ) | 
						
							| 38 | 37 | necon3bd | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( ¬  ( 𝑃  ∨  𝑄 )  ∈  𝐴  →  𝑃  ≠  𝑄 ) ) | 
						
							| 39 | 30 38 | impbid | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ≠  𝑄  ↔  ¬  ( 𝑃  ∨  𝑄 )  ∈  𝐴 ) ) |