Step |
Hyp |
Ref |
Expression |
1 |
|
lno0.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
lno0.2 |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
3 |
|
lno0.5 |
⊢ 𝑄 = ( 0vec ‘ 𝑈 ) |
4 |
|
lno0.z |
⊢ 𝑍 = ( 0vec ‘ 𝑊 ) |
5 |
|
lno0.7 |
⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) |
6 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
7 |
6
|
a1i |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → - 1 ∈ ℂ ) |
8 |
1 3
|
nvzcl |
⊢ ( 𝑈 ∈ NrmCVec → 𝑄 ∈ 𝑋 ) |
9 |
8
|
3ad2ant1 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → 𝑄 ∈ 𝑋 ) |
10 |
7 9 9
|
3jca |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ( - 1 ∈ ℂ ∧ 𝑄 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ) |
11 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) |
12 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑊 ) = ( +𝑣 ‘ 𝑊 ) |
13 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) |
14 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑊 ) = ( ·𝑠OLD ‘ 𝑊 ) |
15 |
1 2 11 12 13 14 5
|
lnolin |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( - 1 ∈ ℂ ∧ 𝑄 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑄 ) ( +𝑣 ‘ 𝑈 ) 𝑄 ) ) = ( ( - 1 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ( +𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) |
16 |
10 15
|
mpdan |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ( 𝑇 ‘ ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑄 ) ( +𝑣 ‘ 𝑈 ) 𝑄 ) ) = ( ( - 1 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ( +𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) |
17 |
1 11 13 3
|
nvlinv |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑄 ∈ 𝑋 ) → ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑄 ) ( +𝑣 ‘ 𝑈 ) 𝑄 ) = 𝑄 ) |
18 |
8 17
|
mpdan |
⊢ ( 𝑈 ∈ NrmCVec → ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑄 ) ( +𝑣 ‘ 𝑈 ) 𝑄 ) = 𝑄 ) |
19 |
18
|
fveq2d |
⊢ ( 𝑈 ∈ NrmCVec → ( 𝑇 ‘ ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑄 ) ( +𝑣 ‘ 𝑈 ) 𝑄 ) ) = ( 𝑇 ‘ 𝑄 ) ) |
20 |
19
|
3ad2ant1 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ( 𝑇 ‘ ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑄 ) ( +𝑣 ‘ 𝑈 ) 𝑄 ) ) = ( 𝑇 ‘ 𝑄 ) ) |
21 |
|
simp2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → 𝑊 ∈ NrmCVec ) |
22 |
1 2 5
|
lnof |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → 𝑇 : 𝑋 ⟶ 𝑌 ) |
23 |
22 9
|
ffvelrnd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ( 𝑇 ‘ 𝑄 ) ∈ 𝑌 ) |
24 |
2 12 14 4
|
nvlinv |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝑇 ‘ 𝑄 ) ∈ 𝑌 ) → ( ( - 1 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ( +𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) = 𝑍 ) |
25 |
21 23 24
|
syl2anc |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ( ( - 1 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ( +𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) = 𝑍 ) |
26 |
16 20 25
|
3eqtr3d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ( 𝑇 ‘ 𝑄 ) = 𝑍 ) |