Metamath Proof Explorer


Theorem lnocni

Description: If a linear operator is continuous at any point, it is continuous everywhere. Theorem 2.7-9(b) of Kreyszig p. 97. (Contributed by NM, 18-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses blocni.8 𝐶 = ( IndMet ‘ 𝑈 )
blocni.d 𝐷 = ( IndMet ‘ 𝑊 )
blocni.j 𝐽 = ( MetOpen ‘ 𝐶 )
blocni.k 𝐾 = ( MetOpen ‘ 𝐷 )
blocni.4 𝐿 = ( 𝑈 LnOp 𝑊 )
blocni.5 𝐵 = ( 𝑈 BLnOp 𝑊 )
blocni.u 𝑈 ∈ NrmCVec
blocni.w 𝑊 ∈ NrmCVec
blocni.l 𝑇𝐿
lnocni.1 𝑋 = ( BaseSet ‘ 𝑈 )
Assertion lnocni ( ( 𝑃𝑋𝑇 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝑇 ∈ ( 𝐽 Cn 𝐾 ) )

Proof

Step Hyp Ref Expression
1 blocni.8 𝐶 = ( IndMet ‘ 𝑈 )
2 blocni.d 𝐷 = ( IndMet ‘ 𝑊 )
3 blocni.j 𝐽 = ( MetOpen ‘ 𝐶 )
4 blocni.k 𝐾 = ( MetOpen ‘ 𝐷 )
5 blocni.4 𝐿 = ( 𝑈 LnOp 𝑊 )
6 blocni.5 𝐵 = ( 𝑈 BLnOp 𝑊 )
7 blocni.u 𝑈 ∈ NrmCVec
8 blocni.w 𝑊 ∈ NrmCVec
9 blocni.l 𝑇𝐿
10 lnocni.1 𝑋 = ( BaseSet ‘ 𝑈 )
11 1 2 3 4 5 6 7 8 9 10 blocnilem ( ( 𝑃𝑋𝑇 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝑇𝐵 )
12 1 2 3 4 5 6 7 8 9 blocni ( 𝑇 ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝑇𝐵 )
13 11 12 sylibr ( ( 𝑃𝑋𝑇 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝑇 ∈ ( 𝐽 Cn 𝐾 ) )