Database
COMPLEX TOPOLOGICAL VECTOR SPACES (DEPRECATED)
Operators on complex vector spaces
Definitions and basic properties
lnocni
Metamath Proof Explorer
Description: If a linear operator is continuous at any point, it is continuous
everywhere. Theorem 2.7-9(b) of Kreyszig p. 97. (Contributed by NM , 18-Dec-2007) (New usage is discouraged.)
Ref
Expression
Hypotheses
blocni.8
⊢ 𝐶 = ( IndMet ‘ 𝑈 )
blocni.d
⊢ 𝐷 = ( IndMet ‘ 𝑊 )
blocni.j
⊢ 𝐽 = ( MetOpen ‘ 𝐶 )
blocni.k
⊢ 𝐾 = ( MetOpen ‘ 𝐷 )
blocni.4
⊢ 𝐿 = ( 𝑈 LnOp 𝑊 )
blocni.5
⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 )
blocni.u
⊢ 𝑈 ∈ NrmCVec
blocni.w
⊢ 𝑊 ∈ NrmCVec
blocni.l
⊢ 𝑇 ∈ 𝐿
lnocni.1
⊢ 𝑋 = ( BaseSet ‘ 𝑈 )
Assertion
lnocni
⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝑇 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝑇 ∈ ( 𝐽 Cn 𝐾 ) )
Proof
Step
Hyp
Ref
Expression
1
blocni.8
⊢ 𝐶 = ( IndMet ‘ 𝑈 )
2
blocni.d
⊢ 𝐷 = ( IndMet ‘ 𝑊 )
3
blocni.j
⊢ 𝐽 = ( MetOpen ‘ 𝐶 )
4
blocni.k
⊢ 𝐾 = ( MetOpen ‘ 𝐷 )
5
blocni.4
⊢ 𝐿 = ( 𝑈 LnOp 𝑊 )
6
blocni.5
⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 )
7
blocni.u
⊢ 𝑈 ∈ NrmCVec
8
blocni.w
⊢ 𝑊 ∈ NrmCVec
9
blocni.l
⊢ 𝑇 ∈ 𝐿
10
lnocni.1
⊢ 𝑋 = ( BaseSet ‘ 𝑈 )
11
1 2 3 4 5 6 7 8 9 10
blocnilem
⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝑇 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝑇 ∈ 𝐵 )
12
1 2 3 4 5 6 7 8 9
blocni
⊢ ( 𝑇 ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝑇 ∈ 𝐵 )
13
11 12
sylibr
⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝑇 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝑇 ∈ ( 𝐽 Cn 𝐾 ) )