Metamath Proof Explorer


Theorem lnof

Description: A linear operator is a mapping. (Contributed by NM, 4-Dec-2007) (Revised by Mario Carneiro, 18-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses lnof.1 𝑋 = ( BaseSet ‘ 𝑈 )
lnof.2 𝑌 = ( BaseSet ‘ 𝑊 )
lnof.7 𝐿 = ( 𝑈 LnOp 𝑊 )
Assertion lnof ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿 ) → 𝑇 : 𝑋𝑌 )

Proof

Step Hyp Ref Expression
1 lnof.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 lnof.2 𝑌 = ( BaseSet ‘ 𝑊 )
3 lnof.7 𝐿 = ( 𝑈 LnOp 𝑊 )
4 eqid ( +𝑣𝑈 ) = ( +𝑣𝑈 )
5 eqid ( +𝑣𝑊 ) = ( +𝑣𝑊 )
6 eqid ( ·𝑠OLD𝑈 ) = ( ·𝑠OLD𝑈 )
7 eqid ( ·𝑠OLD𝑊 ) = ( ·𝑠OLD𝑊 )
8 1 2 4 5 6 7 3 islno ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑇𝐿 ↔ ( 𝑇 : 𝑋𝑌 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦𝑋𝑧𝑋 ( 𝑇 ‘ ( ( 𝑥 ( ·𝑠OLD𝑈 ) 𝑦 ) ( +𝑣𝑈 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD𝑊 ) ( 𝑇𝑦 ) ) ( +𝑣𝑊 ) ( 𝑇𝑧 ) ) ) ) )
9 8 simprbda ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) ∧ 𝑇𝐿 ) → 𝑇 : 𝑋𝑌 )
10 9 3impa ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿 ) → 𝑇 : 𝑋𝑌 )