Step |
Hyp |
Ref |
Expression |
1 |
|
lnof.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
lnof.2 |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
3 |
|
lnof.7 |
⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) |
4 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) |
5 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑊 ) = ( +𝑣 ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) |
7 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑊 ) = ( ·𝑠OLD ‘ 𝑊 ) |
8 |
1 2 4 5 6 7 3
|
islno |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑇 ∈ 𝐿 ↔ ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑇 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑇 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑧 ) ) ) ) ) |
9 |
8
|
simprbda |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) ∧ 𝑇 ∈ 𝐿 ) → 𝑇 : 𝑋 ⟶ 𝑌 ) |
10 |
9
|
3impa |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → 𝑇 : 𝑋 ⟶ 𝑌 ) |