Step |
Hyp |
Ref |
Expression |
1 |
|
lnoval.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
lnoval.2 |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
3 |
|
lnoval.3 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
4 |
|
lnoval.4 |
⊢ 𝐻 = ( +𝑣 ‘ 𝑊 ) |
5 |
|
lnoval.5 |
⊢ 𝑅 = ( ·𝑠OLD ‘ 𝑈 ) |
6 |
|
lnoval.6 |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑊 ) |
7 |
|
lnoval.7 |
⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) |
8 |
1 2 3 4 5 6 7
|
islno |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑇 ∈ 𝐿 ↔ ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑢 ∈ ℂ ∀ 𝑤 ∈ 𝑋 ∀ 𝑡 ∈ 𝑋 ( 𝑇 ‘ ( ( 𝑢 𝑅 𝑤 ) 𝐺 𝑡 ) ) = ( ( 𝑢 𝑆 ( 𝑇 ‘ 𝑤 ) ) 𝐻 ( 𝑇 ‘ 𝑡 ) ) ) ) ) |
9 |
8
|
biimp3a |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑢 ∈ ℂ ∀ 𝑤 ∈ 𝑋 ∀ 𝑡 ∈ 𝑋 ( 𝑇 ‘ ( ( 𝑢 𝑅 𝑤 ) 𝐺 𝑡 ) ) = ( ( 𝑢 𝑆 ( 𝑇 ‘ 𝑤 ) ) 𝐻 ( 𝑇 ‘ 𝑡 ) ) ) ) |
10 |
9
|
simprd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ∀ 𝑢 ∈ ℂ ∀ 𝑤 ∈ 𝑋 ∀ 𝑡 ∈ 𝑋 ( 𝑇 ‘ ( ( 𝑢 𝑅 𝑤 ) 𝐺 𝑡 ) ) = ( ( 𝑢 𝑆 ( 𝑇 ‘ 𝑤 ) ) 𝐻 ( 𝑇 ‘ 𝑡 ) ) ) |
11 |
|
oveq1 |
⊢ ( 𝑢 = 𝐴 → ( 𝑢 𝑅 𝑤 ) = ( 𝐴 𝑅 𝑤 ) ) |
12 |
11
|
fvoveq1d |
⊢ ( 𝑢 = 𝐴 → ( 𝑇 ‘ ( ( 𝑢 𝑅 𝑤 ) 𝐺 𝑡 ) ) = ( 𝑇 ‘ ( ( 𝐴 𝑅 𝑤 ) 𝐺 𝑡 ) ) ) |
13 |
|
oveq1 |
⊢ ( 𝑢 = 𝐴 → ( 𝑢 𝑆 ( 𝑇 ‘ 𝑤 ) ) = ( 𝐴 𝑆 ( 𝑇 ‘ 𝑤 ) ) ) |
14 |
13
|
oveq1d |
⊢ ( 𝑢 = 𝐴 → ( ( 𝑢 𝑆 ( 𝑇 ‘ 𝑤 ) ) 𝐻 ( 𝑇 ‘ 𝑡 ) ) = ( ( 𝐴 𝑆 ( 𝑇 ‘ 𝑤 ) ) 𝐻 ( 𝑇 ‘ 𝑡 ) ) ) |
15 |
12 14
|
eqeq12d |
⊢ ( 𝑢 = 𝐴 → ( ( 𝑇 ‘ ( ( 𝑢 𝑅 𝑤 ) 𝐺 𝑡 ) ) = ( ( 𝑢 𝑆 ( 𝑇 ‘ 𝑤 ) ) 𝐻 ( 𝑇 ‘ 𝑡 ) ) ↔ ( 𝑇 ‘ ( ( 𝐴 𝑅 𝑤 ) 𝐺 𝑡 ) ) = ( ( 𝐴 𝑆 ( 𝑇 ‘ 𝑤 ) ) 𝐻 ( 𝑇 ‘ 𝑡 ) ) ) ) |
16 |
|
oveq2 |
⊢ ( 𝑤 = 𝐵 → ( 𝐴 𝑅 𝑤 ) = ( 𝐴 𝑅 𝐵 ) ) |
17 |
16
|
fvoveq1d |
⊢ ( 𝑤 = 𝐵 → ( 𝑇 ‘ ( ( 𝐴 𝑅 𝑤 ) 𝐺 𝑡 ) ) = ( 𝑇 ‘ ( ( 𝐴 𝑅 𝐵 ) 𝐺 𝑡 ) ) ) |
18 |
|
fveq2 |
⊢ ( 𝑤 = 𝐵 → ( 𝑇 ‘ 𝑤 ) = ( 𝑇 ‘ 𝐵 ) ) |
19 |
18
|
oveq2d |
⊢ ( 𝑤 = 𝐵 → ( 𝐴 𝑆 ( 𝑇 ‘ 𝑤 ) ) = ( 𝐴 𝑆 ( 𝑇 ‘ 𝐵 ) ) ) |
20 |
19
|
oveq1d |
⊢ ( 𝑤 = 𝐵 → ( ( 𝐴 𝑆 ( 𝑇 ‘ 𝑤 ) ) 𝐻 ( 𝑇 ‘ 𝑡 ) ) = ( ( 𝐴 𝑆 ( 𝑇 ‘ 𝐵 ) ) 𝐻 ( 𝑇 ‘ 𝑡 ) ) ) |
21 |
17 20
|
eqeq12d |
⊢ ( 𝑤 = 𝐵 → ( ( 𝑇 ‘ ( ( 𝐴 𝑅 𝑤 ) 𝐺 𝑡 ) ) = ( ( 𝐴 𝑆 ( 𝑇 ‘ 𝑤 ) ) 𝐻 ( 𝑇 ‘ 𝑡 ) ) ↔ ( 𝑇 ‘ ( ( 𝐴 𝑅 𝐵 ) 𝐺 𝑡 ) ) = ( ( 𝐴 𝑆 ( 𝑇 ‘ 𝐵 ) ) 𝐻 ( 𝑇 ‘ 𝑡 ) ) ) ) |
22 |
|
oveq2 |
⊢ ( 𝑡 = 𝐶 → ( ( 𝐴 𝑅 𝐵 ) 𝐺 𝑡 ) = ( ( 𝐴 𝑅 𝐵 ) 𝐺 𝐶 ) ) |
23 |
22
|
fveq2d |
⊢ ( 𝑡 = 𝐶 → ( 𝑇 ‘ ( ( 𝐴 𝑅 𝐵 ) 𝐺 𝑡 ) ) = ( 𝑇 ‘ ( ( 𝐴 𝑅 𝐵 ) 𝐺 𝐶 ) ) ) |
24 |
|
fveq2 |
⊢ ( 𝑡 = 𝐶 → ( 𝑇 ‘ 𝑡 ) = ( 𝑇 ‘ 𝐶 ) ) |
25 |
24
|
oveq2d |
⊢ ( 𝑡 = 𝐶 → ( ( 𝐴 𝑆 ( 𝑇 ‘ 𝐵 ) ) 𝐻 ( 𝑇 ‘ 𝑡 ) ) = ( ( 𝐴 𝑆 ( 𝑇 ‘ 𝐵 ) ) 𝐻 ( 𝑇 ‘ 𝐶 ) ) ) |
26 |
23 25
|
eqeq12d |
⊢ ( 𝑡 = 𝐶 → ( ( 𝑇 ‘ ( ( 𝐴 𝑅 𝐵 ) 𝐺 𝑡 ) ) = ( ( 𝐴 𝑆 ( 𝑇 ‘ 𝐵 ) ) 𝐻 ( 𝑇 ‘ 𝑡 ) ) ↔ ( 𝑇 ‘ ( ( 𝐴 𝑅 𝐵 ) 𝐺 𝐶 ) ) = ( ( 𝐴 𝑆 ( 𝑇 ‘ 𝐵 ) ) 𝐻 ( 𝑇 ‘ 𝐶 ) ) ) ) |
27 |
15 21 26
|
rspc3v |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ∀ 𝑢 ∈ ℂ ∀ 𝑤 ∈ 𝑋 ∀ 𝑡 ∈ 𝑋 ( 𝑇 ‘ ( ( 𝑢 𝑅 𝑤 ) 𝐺 𝑡 ) ) = ( ( 𝑢 𝑆 ( 𝑇 ‘ 𝑤 ) ) 𝐻 ( 𝑇 ‘ 𝑡 ) ) → ( 𝑇 ‘ ( ( 𝐴 𝑅 𝐵 ) 𝐺 𝐶 ) ) = ( ( 𝐴 𝑆 ( 𝑇 ‘ 𝐵 ) ) 𝐻 ( 𝑇 ‘ 𝐶 ) ) ) ) |
28 |
10 27
|
mpan9 |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( ( 𝐴 𝑅 𝐵 ) 𝐺 𝐶 ) ) = ( ( 𝐴 𝑆 ( 𝑇 ‘ 𝐵 ) ) 𝐻 ( 𝑇 ‘ 𝐶 ) ) ) |