Metamath Proof Explorer


Theorem lnon0

Description: The domain of a nonzero linear operator contains a nonzero vector. (Contributed by NM, 15-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses lnon0.1 𝑋 = ( BaseSet ‘ 𝑈 )
lnon0.6 𝑍 = ( 0vec𝑈 )
lnon0.0 𝑂 = ( 𝑈 0op 𝑊 )
lnon0.7 𝐿 = ( 𝑈 LnOp 𝑊 )
Assertion lnon0 ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿 ) ∧ 𝑇𝑂 ) → ∃ 𝑥𝑋 𝑥𝑍 )

Proof

Step Hyp Ref Expression
1 lnon0.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 lnon0.6 𝑍 = ( 0vec𝑈 )
3 lnon0.0 𝑂 = ( 𝑈 0op 𝑊 )
4 lnon0.7 𝐿 = ( 𝑈 LnOp 𝑊 )
5 ralnex ( ∀ 𝑥𝑋 ¬ 𝑥𝑍 ↔ ¬ ∃ 𝑥𝑋 𝑥𝑍 )
6 nne ( ¬ 𝑥𝑍𝑥 = 𝑍 )
7 6 ralbii ( ∀ 𝑥𝑋 ¬ 𝑥𝑍 ↔ ∀ 𝑥𝑋 𝑥 = 𝑍 )
8 5 7 bitr3i ( ¬ ∃ 𝑥𝑋 𝑥𝑍 ↔ ∀ 𝑥𝑋 𝑥 = 𝑍 )
9 fveq2 ( 𝑥 = 𝑍 → ( 𝑇𝑥 ) = ( 𝑇𝑍 ) )
10 eqid ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 )
11 eqid ( 0vec𝑊 ) = ( 0vec𝑊 )
12 1 10 2 11 4 lno0 ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿 ) → ( 𝑇𝑍 ) = ( 0vec𝑊 ) )
13 9 12 sylan9eqr ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿 ) ∧ 𝑥 = 𝑍 ) → ( 𝑇𝑥 ) = ( 0vec𝑊 ) )
14 13 ex ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿 ) → ( 𝑥 = 𝑍 → ( 𝑇𝑥 ) = ( 0vec𝑊 ) ) )
15 14 ralimdv ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿 ) → ( ∀ 𝑥𝑋 𝑥 = 𝑍 → ∀ 𝑥𝑋 ( 𝑇𝑥 ) = ( 0vec𝑊 ) ) )
16 1 10 4 lnof ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿 ) → 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) )
17 16 ffnd ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿 ) → 𝑇 Fn 𝑋 )
18 15 17 jctild ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿 ) → ( ∀ 𝑥𝑋 𝑥 = 𝑍 → ( 𝑇 Fn 𝑋 ∧ ∀ 𝑥𝑋 ( 𝑇𝑥 ) = ( 0vec𝑊 ) ) ) )
19 fconstfv ( 𝑇 : 𝑋 ⟶ { ( 0vec𝑊 ) } ↔ ( 𝑇 Fn 𝑋 ∧ ∀ 𝑥𝑋 ( 𝑇𝑥 ) = ( 0vec𝑊 ) ) )
20 fvex ( 0vec𝑊 ) ∈ V
21 20 fconst2 ( 𝑇 : 𝑋 ⟶ { ( 0vec𝑊 ) } ↔ 𝑇 = ( 𝑋 × { ( 0vec𝑊 ) } ) )
22 19 21 bitr3i ( ( 𝑇 Fn 𝑋 ∧ ∀ 𝑥𝑋 ( 𝑇𝑥 ) = ( 0vec𝑊 ) ) ↔ 𝑇 = ( 𝑋 × { ( 0vec𝑊 ) } ) )
23 18 22 syl6ib ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿 ) → ( ∀ 𝑥𝑋 𝑥 = 𝑍𝑇 = ( 𝑋 × { ( 0vec𝑊 ) } ) ) )
24 1 11 3 0ofval ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝑂 = ( 𝑋 × { ( 0vec𝑊 ) } ) )
25 24 3adant3 ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿 ) → 𝑂 = ( 𝑋 × { ( 0vec𝑊 ) } ) )
26 25 eqeq2d ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿 ) → ( 𝑇 = 𝑂𝑇 = ( 𝑋 × { ( 0vec𝑊 ) } ) ) )
27 23 26 sylibrd ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿 ) → ( ∀ 𝑥𝑋 𝑥 = 𝑍𝑇 = 𝑂 ) )
28 8 27 syl5bi ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿 ) → ( ¬ ∃ 𝑥𝑋 𝑥𝑍𝑇 = 𝑂 ) )
29 28 necon1ad ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿 ) → ( 𝑇𝑂 → ∃ 𝑥𝑋 𝑥𝑍 ) )
30 29 imp ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿 ) ∧ 𝑇𝑂 ) → ∃ 𝑥𝑋 𝑥𝑍 )