Metamath Proof Explorer


Theorem lnop0

Description: The value of a linear Hilbert space operator at zero is zero. Remark in Beran p. 99. (Contributed by NM, 13-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion lnop0 ( 𝑇 ∈ LinOp → ( 𝑇 ‘ 0 ) = 0 )

Proof

Step Hyp Ref Expression
1 ax-1cn 1 ∈ ℂ
2 ax-hv0cl 0 ∈ ℋ
3 1 2 hvmulcli ( 1 · 0 ) ∈ ℋ
4 ax-hvaddid ( ( 1 · 0 ) ∈ ℋ → ( ( 1 · 0 ) + 0 ) = ( 1 · 0 ) )
5 3 4 ax-mp ( ( 1 · 0 ) + 0 ) = ( 1 · 0 )
6 ax-hvmulid ( 0 ∈ ℋ → ( 1 · 0 ) = 0 )
7 2 6 ax-mp ( 1 · 0 ) = 0
8 5 7 eqtri ( ( 1 · 0 ) + 0 ) = 0
9 8 fveq2i ( 𝑇 ‘ ( ( 1 · 0 ) + 0 ) ) = ( 𝑇 ‘ 0 )
10 lnopl ( ( ( 𝑇 ∈ LinOp ∧ 1 ∈ ℂ ) ∧ ( 0 ∈ ℋ ∧ 0 ∈ ℋ ) ) → ( 𝑇 ‘ ( ( 1 · 0 ) + 0 ) ) = ( ( 1 · ( 𝑇 ‘ 0 ) ) + ( 𝑇 ‘ 0 ) ) )
11 2 2 10 mpanr12 ( ( 𝑇 ∈ LinOp ∧ 1 ∈ ℂ ) → ( 𝑇 ‘ ( ( 1 · 0 ) + 0 ) ) = ( ( 1 · ( 𝑇 ‘ 0 ) ) + ( 𝑇 ‘ 0 ) ) )
12 1 11 mpan2 ( 𝑇 ∈ LinOp → ( 𝑇 ‘ ( ( 1 · 0 ) + 0 ) ) = ( ( 1 · ( 𝑇 ‘ 0 ) ) + ( 𝑇 ‘ 0 ) ) )
13 9 12 eqtr3id ( 𝑇 ∈ LinOp → ( 𝑇 ‘ 0 ) = ( ( 1 · ( 𝑇 ‘ 0 ) ) + ( 𝑇 ‘ 0 ) ) )
14 lnopf ( 𝑇 ∈ LinOp → 𝑇 : ℋ ⟶ ℋ )
15 ffvelrn ( ( 𝑇 : ℋ ⟶ ℋ ∧ 0 ∈ ℋ ) → ( 𝑇 ‘ 0 ) ∈ ℋ )
16 2 15 mpan2 ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇 ‘ 0 ) ∈ ℋ )
17 14 16 syl ( 𝑇 ∈ LinOp → ( 𝑇 ‘ 0 ) ∈ ℋ )
18 ax-hvmulid ( ( 𝑇 ‘ 0 ) ∈ ℋ → ( 1 · ( 𝑇 ‘ 0 ) ) = ( 𝑇 ‘ 0 ) )
19 17 18 syl ( 𝑇 ∈ LinOp → ( 1 · ( 𝑇 ‘ 0 ) ) = ( 𝑇 ‘ 0 ) )
20 19 oveq1d ( 𝑇 ∈ LinOp → ( ( 1 · ( 𝑇 ‘ 0 ) ) + ( 𝑇 ‘ 0 ) ) = ( ( 𝑇 ‘ 0 ) + ( 𝑇 ‘ 0 ) ) )
21 13 20 eqtrd ( 𝑇 ∈ LinOp → ( 𝑇 ‘ 0 ) = ( ( 𝑇 ‘ 0 ) + ( 𝑇 ‘ 0 ) ) )
22 21 oveq1d ( 𝑇 ∈ LinOp → ( ( 𝑇 ‘ 0 ) − ( 𝑇 ‘ 0 ) ) = ( ( ( 𝑇 ‘ 0 ) + ( 𝑇 ‘ 0 ) ) − ( 𝑇 ‘ 0 ) ) )
23 hvsubid ( ( 𝑇 ‘ 0 ) ∈ ℋ → ( ( 𝑇 ‘ 0 ) − ( 𝑇 ‘ 0 ) ) = 0 )
24 17 23 syl ( 𝑇 ∈ LinOp → ( ( 𝑇 ‘ 0 ) − ( 𝑇 ‘ 0 ) ) = 0 )
25 hvpncan ( ( ( 𝑇 ‘ 0 ) ∈ ℋ ∧ ( 𝑇 ‘ 0 ) ∈ ℋ ) → ( ( ( 𝑇 ‘ 0 ) + ( 𝑇 ‘ 0 ) ) − ( 𝑇 ‘ 0 ) ) = ( 𝑇 ‘ 0 ) )
26 25 anidms ( ( 𝑇 ‘ 0 ) ∈ ℋ → ( ( ( 𝑇 ‘ 0 ) + ( 𝑇 ‘ 0 ) ) − ( 𝑇 ‘ 0 ) ) = ( 𝑇 ‘ 0 ) )
27 17 26 syl ( 𝑇 ∈ LinOp → ( ( ( 𝑇 ‘ 0 ) + ( 𝑇 ‘ 0 ) ) − ( 𝑇 ‘ 0 ) ) = ( 𝑇 ‘ 0 ) )
28 22 24 27 3eqtr3rd ( 𝑇 ∈ LinOp → ( 𝑇 ‘ 0 ) = 0 )