Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
2 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
3 |
1 2
|
hvmulcli |
⊢ ( 1 ·ℎ 0ℎ ) ∈ ℋ |
4 |
|
ax-hvaddid |
⊢ ( ( 1 ·ℎ 0ℎ ) ∈ ℋ → ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) = ( 1 ·ℎ 0ℎ ) ) |
5 |
3 4
|
ax-mp |
⊢ ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) = ( 1 ·ℎ 0ℎ ) |
6 |
|
ax-hvmulid |
⊢ ( 0ℎ ∈ ℋ → ( 1 ·ℎ 0ℎ ) = 0ℎ ) |
7 |
2 6
|
ax-mp |
⊢ ( 1 ·ℎ 0ℎ ) = 0ℎ |
8 |
5 7
|
eqtri |
⊢ ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) = 0ℎ |
9 |
8
|
fveq2i |
⊢ ( 𝑇 ‘ ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) ) = ( 𝑇 ‘ 0ℎ ) |
10 |
|
lnopl |
⊢ ( ( ( 𝑇 ∈ LinOp ∧ 1 ∈ ℂ ) ∧ ( 0ℎ ∈ ℋ ∧ 0ℎ ∈ ℋ ) ) → ( 𝑇 ‘ ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) ) = ( ( 1 ·ℎ ( 𝑇 ‘ 0ℎ ) ) +ℎ ( 𝑇 ‘ 0ℎ ) ) ) |
11 |
2 2 10
|
mpanr12 |
⊢ ( ( 𝑇 ∈ LinOp ∧ 1 ∈ ℂ ) → ( 𝑇 ‘ ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) ) = ( ( 1 ·ℎ ( 𝑇 ‘ 0ℎ ) ) +ℎ ( 𝑇 ‘ 0ℎ ) ) ) |
12 |
1 11
|
mpan2 |
⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ‘ ( ( 1 ·ℎ 0ℎ ) +ℎ 0ℎ ) ) = ( ( 1 ·ℎ ( 𝑇 ‘ 0ℎ ) ) +ℎ ( 𝑇 ‘ 0ℎ ) ) ) |
13 |
9 12
|
eqtr3id |
⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ‘ 0ℎ ) = ( ( 1 ·ℎ ( 𝑇 ‘ 0ℎ ) ) +ℎ ( 𝑇 ‘ 0ℎ ) ) ) |
14 |
|
lnopf |
⊢ ( 𝑇 ∈ LinOp → 𝑇 : ℋ ⟶ ℋ ) |
15 |
|
ffvelrn |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 0ℎ ∈ ℋ ) → ( 𝑇 ‘ 0ℎ ) ∈ ℋ ) |
16 |
2 15
|
mpan2 |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇 ‘ 0ℎ ) ∈ ℋ ) |
17 |
14 16
|
syl |
⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ‘ 0ℎ ) ∈ ℋ ) |
18 |
|
ax-hvmulid |
⊢ ( ( 𝑇 ‘ 0ℎ ) ∈ ℋ → ( 1 ·ℎ ( 𝑇 ‘ 0ℎ ) ) = ( 𝑇 ‘ 0ℎ ) ) |
19 |
17 18
|
syl |
⊢ ( 𝑇 ∈ LinOp → ( 1 ·ℎ ( 𝑇 ‘ 0ℎ ) ) = ( 𝑇 ‘ 0ℎ ) ) |
20 |
19
|
oveq1d |
⊢ ( 𝑇 ∈ LinOp → ( ( 1 ·ℎ ( 𝑇 ‘ 0ℎ ) ) +ℎ ( 𝑇 ‘ 0ℎ ) ) = ( ( 𝑇 ‘ 0ℎ ) +ℎ ( 𝑇 ‘ 0ℎ ) ) ) |
21 |
13 20
|
eqtrd |
⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ‘ 0ℎ ) = ( ( 𝑇 ‘ 0ℎ ) +ℎ ( 𝑇 ‘ 0ℎ ) ) ) |
22 |
21
|
oveq1d |
⊢ ( 𝑇 ∈ LinOp → ( ( 𝑇 ‘ 0ℎ ) −ℎ ( 𝑇 ‘ 0ℎ ) ) = ( ( ( 𝑇 ‘ 0ℎ ) +ℎ ( 𝑇 ‘ 0ℎ ) ) −ℎ ( 𝑇 ‘ 0ℎ ) ) ) |
23 |
|
hvsubid |
⊢ ( ( 𝑇 ‘ 0ℎ ) ∈ ℋ → ( ( 𝑇 ‘ 0ℎ ) −ℎ ( 𝑇 ‘ 0ℎ ) ) = 0ℎ ) |
24 |
17 23
|
syl |
⊢ ( 𝑇 ∈ LinOp → ( ( 𝑇 ‘ 0ℎ ) −ℎ ( 𝑇 ‘ 0ℎ ) ) = 0ℎ ) |
25 |
|
hvpncan |
⊢ ( ( ( 𝑇 ‘ 0ℎ ) ∈ ℋ ∧ ( 𝑇 ‘ 0ℎ ) ∈ ℋ ) → ( ( ( 𝑇 ‘ 0ℎ ) +ℎ ( 𝑇 ‘ 0ℎ ) ) −ℎ ( 𝑇 ‘ 0ℎ ) ) = ( 𝑇 ‘ 0ℎ ) ) |
26 |
25
|
anidms |
⊢ ( ( 𝑇 ‘ 0ℎ ) ∈ ℋ → ( ( ( 𝑇 ‘ 0ℎ ) +ℎ ( 𝑇 ‘ 0ℎ ) ) −ℎ ( 𝑇 ‘ 0ℎ ) ) = ( 𝑇 ‘ 0ℎ ) ) |
27 |
17 26
|
syl |
⊢ ( 𝑇 ∈ LinOp → ( ( ( 𝑇 ‘ 0ℎ ) +ℎ ( 𝑇 ‘ 0ℎ ) ) −ℎ ( 𝑇 ‘ 0ℎ ) ) = ( 𝑇 ‘ 0ℎ ) ) |
28 |
22 24 27
|
3eqtr3rd |
⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ‘ 0ℎ ) = 0ℎ ) |