Step |
Hyp |
Ref |
Expression |
1 |
|
nmcopex |
⊢ ( ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ) → ( normop ‘ 𝑇 ) ∈ ℝ ) |
2 |
1
|
ex |
⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ∈ ContOp → ( normop ‘ 𝑇 ) ∈ ℝ ) ) |
3 |
|
elbdop2 |
⊢ ( 𝑇 ∈ BndLinOp ↔ ( 𝑇 ∈ LinOp ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) ) |
4 |
3
|
baibr |
⊢ ( 𝑇 ∈ LinOp → ( ( normop ‘ 𝑇 ) ∈ ℝ ↔ 𝑇 ∈ BndLinOp ) ) |
5 |
2 4
|
sylibd |
⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ∈ ContOp → 𝑇 ∈ BndLinOp ) ) |
6 |
|
nmopre |
⊢ ( 𝑇 ∈ BndLinOp → ( normop ‘ 𝑇 ) ∈ ℝ ) |
7 |
|
nmbdoplb |
⊢ ( ( 𝑇 ∈ BndLinOp ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) |
8 |
7
|
ralrimiva |
⊢ ( 𝑇 ∈ BndLinOp → ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) |
9 |
|
oveq1 |
⊢ ( 𝑥 = ( normop ‘ 𝑇 ) → ( 𝑥 · ( normℎ ‘ 𝑦 ) ) = ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) |
10 |
9
|
breq2d |
⊢ ( 𝑥 = ( normop ‘ 𝑇 ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) ) |
11 |
10
|
ralbidv |
⊢ ( 𝑥 = ( normop ‘ 𝑇 ) → ( ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) ) |
12 |
11
|
rspcev |
⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) |
13 |
6 8 12
|
syl2anc |
⊢ ( 𝑇 ∈ BndLinOp → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) |
14 |
|
lnopcon |
⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ∈ ContOp ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ) |
15 |
13 14
|
syl5ibr |
⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ∈ BndLinOp → 𝑇 ∈ ContOp ) ) |
16 |
5 15
|
impbid |
⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ∈ ContOp ↔ 𝑇 ∈ BndLinOp ) ) |