Metamath Proof Explorer


Theorem lnopcnbd

Description: A linear operator is continuous iff it is bounded. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion lnopcnbd ( 𝑇 ∈ LinOp → ( 𝑇 ∈ ContOp ↔ 𝑇 ∈ BndLinOp ) )

Proof

Step Hyp Ref Expression
1 nmcopex ( ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ) → ( normop𝑇 ) ∈ ℝ )
2 1 ex ( 𝑇 ∈ LinOp → ( 𝑇 ∈ ContOp → ( normop𝑇 ) ∈ ℝ ) )
3 elbdop2 ( 𝑇 ∈ BndLinOp ↔ ( 𝑇 ∈ LinOp ∧ ( normop𝑇 ) ∈ ℝ ) )
4 3 baibr ( 𝑇 ∈ LinOp → ( ( normop𝑇 ) ∈ ℝ ↔ 𝑇 ∈ BndLinOp ) )
5 2 4 sylibd ( 𝑇 ∈ LinOp → ( 𝑇 ∈ ContOp → 𝑇 ∈ BndLinOp ) )
6 nmopre ( 𝑇 ∈ BndLinOp → ( normop𝑇 ) ∈ ℝ )
7 nmbdoplb ( ( 𝑇 ∈ BndLinOp ∧ 𝑦 ∈ ℋ ) → ( norm ‘ ( 𝑇𝑦 ) ) ≤ ( ( normop𝑇 ) · ( norm𝑦 ) ) )
8 7 ralrimiva ( 𝑇 ∈ BndLinOp → ∀ 𝑦 ∈ ℋ ( norm ‘ ( 𝑇𝑦 ) ) ≤ ( ( normop𝑇 ) · ( norm𝑦 ) ) )
9 oveq1 ( 𝑥 = ( normop𝑇 ) → ( 𝑥 · ( norm𝑦 ) ) = ( ( normop𝑇 ) · ( norm𝑦 ) ) )
10 9 breq2d ( 𝑥 = ( normop𝑇 ) → ( ( norm ‘ ( 𝑇𝑦 ) ) ≤ ( 𝑥 · ( norm𝑦 ) ) ↔ ( norm ‘ ( 𝑇𝑦 ) ) ≤ ( ( normop𝑇 ) · ( norm𝑦 ) ) ) )
11 10 ralbidv ( 𝑥 = ( normop𝑇 ) → ( ∀ 𝑦 ∈ ℋ ( norm ‘ ( 𝑇𝑦 ) ) ≤ ( 𝑥 · ( norm𝑦 ) ) ↔ ∀ 𝑦 ∈ ℋ ( norm ‘ ( 𝑇𝑦 ) ) ≤ ( ( normop𝑇 ) · ( norm𝑦 ) ) ) )
12 11 rspcev ( ( ( normop𝑇 ) ∈ ℝ ∧ ∀ 𝑦 ∈ ℋ ( norm ‘ ( 𝑇𝑦 ) ) ≤ ( ( normop𝑇 ) · ( norm𝑦 ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( norm ‘ ( 𝑇𝑦 ) ) ≤ ( 𝑥 · ( norm𝑦 ) ) )
13 6 8 12 syl2anc ( 𝑇 ∈ BndLinOp → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( norm ‘ ( 𝑇𝑦 ) ) ≤ ( 𝑥 · ( norm𝑦 ) ) )
14 lnopcon ( 𝑇 ∈ LinOp → ( 𝑇 ∈ ContOp ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( norm ‘ ( 𝑇𝑦 ) ) ≤ ( 𝑥 · ( norm𝑦 ) ) ) )
15 13 14 syl5ibr ( 𝑇 ∈ LinOp → ( 𝑇 ∈ BndLinOp → 𝑇 ∈ ContOp ) )
16 5 15 impbid ( 𝑇 ∈ LinOp → ( 𝑇 ∈ ContOp ↔ 𝑇 ∈ BndLinOp ) )