| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmcopex | ⊢ ( ( 𝑇  ∈  LinOp  ∧  𝑇  ∈  ContOp )  →  ( normop ‘ 𝑇 )  ∈  ℝ ) | 
						
							| 2 | 1 | ex | ⊢ ( 𝑇  ∈  LinOp  →  ( 𝑇  ∈  ContOp  →  ( normop ‘ 𝑇 )  ∈  ℝ ) ) | 
						
							| 3 |  | elbdop2 | ⊢ ( 𝑇  ∈  BndLinOp  ↔  ( 𝑇  ∈  LinOp  ∧  ( normop ‘ 𝑇 )  ∈  ℝ ) ) | 
						
							| 4 | 3 | baibr | ⊢ ( 𝑇  ∈  LinOp  →  ( ( normop ‘ 𝑇 )  ∈  ℝ  ↔  𝑇  ∈  BndLinOp ) ) | 
						
							| 5 | 2 4 | sylibd | ⊢ ( 𝑇  ∈  LinOp  →  ( 𝑇  ∈  ContOp  →  𝑇  ∈  BndLinOp ) ) | 
						
							| 6 |  | nmopre | ⊢ ( 𝑇  ∈  BndLinOp  →  ( normop ‘ 𝑇 )  ∈  ℝ ) | 
						
							| 7 |  | nmbdoplb | ⊢ ( ( 𝑇  ∈  BndLinOp  ∧  𝑦  ∈   ℋ )  →  ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑦 ) ) ) | 
						
							| 8 | 7 | ralrimiva | ⊢ ( 𝑇  ∈  BndLinOp  →  ∀ 𝑦  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑦 ) ) ) | 
						
							| 9 |  | oveq1 | ⊢ ( 𝑥  =  ( normop ‘ 𝑇 )  →  ( 𝑥  ·  ( normℎ ‘ 𝑦 ) )  =  ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑦 ) ) ) | 
						
							| 10 | 9 | breq2d | ⊢ ( 𝑥  =  ( normop ‘ 𝑇 )  →  ( ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  ( 𝑥  ·  ( normℎ ‘ 𝑦 ) )  ↔  ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑦 ) ) ) ) | 
						
							| 11 | 10 | ralbidv | ⊢ ( 𝑥  =  ( normop ‘ 𝑇 )  →  ( ∀ 𝑦  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  ( 𝑥  ·  ( normℎ ‘ 𝑦 ) )  ↔  ∀ 𝑦  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑦 ) ) ) ) | 
						
							| 12 | 11 | rspcev | ⊢ ( ( ( normop ‘ 𝑇 )  ∈  ℝ  ∧  ∀ 𝑦  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  ( ( normop ‘ 𝑇 )  ·  ( normℎ ‘ 𝑦 ) ) )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  ( 𝑥  ·  ( normℎ ‘ 𝑦 ) ) ) | 
						
							| 13 | 6 8 12 | syl2anc | ⊢ ( 𝑇  ∈  BndLinOp  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  ( 𝑥  ·  ( normℎ ‘ 𝑦 ) ) ) | 
						
							| 14 |  | lnopcon | ⊢ ( 𝑇  ∈  LinOp  →  ( 𝑇  ∈  ContOp  ↔  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  ( 𝑥  ·  ( normℎ ‘ 𝑦 ) ) ) ) | 
						
							| 15 | 13 14 | imbitrrid | ⊢ ( 𝑇  ∈  LinOp  →  ( 𝑇  ∈  BndLinOp  →  𝑇  ∈  ContOp ) ) | 
						
							| 16 | 5 15 | impbid | ⊢ ( 𝑇  ∈  LinOp  →  ( 𝑇  ∈  ContOp  ↔  𝑇  ∈  BndLinOp ) ) |