Description: A linear operator is continuous iff it is bounded. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | lnopcnre | ⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ∈ ContOp ↔ ( normop ‘ 𝑇 ) ∈ ℝ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnopcnbd | ⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ∈ ContOp ↔ 𝑇 ∈ BndLinOp ) ) | |
2 | elbdop2 | ⊢ ( 𝑇 ∈ BndLinOp ↔ ( 𝑇 ∈ LinOp ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) ) | |
3 | 2 | baib | ⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ∈ BndLinOp ↔ ( normop ‘ 𝑇 ) ∈ ℝ ) ) |
4 | 1 3 | bitrd | ⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ∈ ContOp ↔ ( normop ‘ 𝑇 ) ∈ ℝ ) ) |