Metamath Proof Explorer


Theorem lnopcnre

Description: A linear operator is continuous iff it is bounded. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion lnopcnre ( 𝑇 ∈ LinOp → ( 𝑇 ∈ ContOp ↔ ( normop𝑇 ) ∈ ℝ ) )

Proof

Step Hyp Ref Expression
1 lnopcnbd ( 𝑇 ∈ LinOp → ( 𝑇 ∈ ContOp ↔ 𝑇 ∈ BndLinOp ) )
2 elbdop2 ( 𝑇 ∈ BndLinOp ↔ ( 𝑇 ∈ LinOp ∧ ( normop𝑇 ) ∈ ℝ ) )
3 2 baib ( 𝑇 ∈ LinOp → ( 𝑇 ∈ BndLinOp ↔ ( normop𝑇 ) ∈ ℝ ) )
4 1 3 bitrd ( 𝑇 ∈ LinOp → ( 𝑇 ∈ ContOp ↔ ( normop𝑇 ) ∈ ℝ ) )