| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lnopco.1 |
⊢ 𝑆 ∈ LinOp |
| 2 |
|
lnopco.2 |
⊢ 𝑇 ∈ LinOp |
| 3 |
|
coeq2 |
⊢ ( 𝑇 = 0hop → ( 𝑆 ∘ 𝑇 ) = ( 𝑆 ∘ 0hop ) ) |
| 4 |
|
0lnop |
⊢ 0hop ∈ LinOp |
| 5 |
1 4
|
lnopcoi |
⊢ ( 𝑆 ∘ 0hop ) ∈ LinOp |
| 6 |
5
|
lnopfi |
⊢ ( 𝑆 ∘ 0hop ) : ℋ ⟶ ℋ |
| 7 |
|
ffn |
⊢ ( ( 𝑆 ∘ 0hop ) : ℋ ⟶ ℋ → ( 𝑆 ∘ 0hop ) Fn ℋ ) |
| 8 |
6 7
|
ax-mp |
⊢ ( 𝑆 ∘ 0hop ) Fn ℋ |
| 9 |
|
ho0f |
⊢ 0hop : ℋ ⟶ ℋ |
| 10 |
|
ffn |
⊢ ( 0hop : ℋ ⟶ ℋ → 0hop Fn ℋ ) |
| 11 |
9 10
|
ax-mp |
⊢ 0hop Fn ℋ |
| 12 |
|
eqfnfv |
⊢ ( ( ( 𝑆 ∘ 0hop ) Fn ℋ ∧ 0hop Fn ℋ ) → ( ( 𝑆 ∘ 0hop ) = 0hop ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑆 ∘ 0hop ) ‘ 𝑥 ) = ( 0hop ‘ 𝑥 ) ) ) |
| 13 |
8 11 12
|
mp2an |
⊢ ( ( 𝑆 ∘ 0hop ) = 0hop ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑆 ∘ 0hop ) ‘ 𝑥 ) = ( 0hop ‘ 𝑥 ) ) |
| 14 |
|
ho0val |
⊢ ( 𝑥 ∈ ℋ → ( 0hop ‘ 𝑥 ) = 0ℎ ) |
| 15 |
14
|
fveq2d |
⊢ ( 𝑥 ∈ ℋ → ( 𝑆 ‘ ( 0hop ‘ 𝑥 ) ) = ( 𝑆 ‘ 0ℎ ) ) |
| 16 |
1
|
lnop0i |
⊢ ( 𝑆 ‘ 0ℎ ) = 0ℎ |
| 17 |
15 16
|
eqtrdi |
⊢ ( 𝑥 ∈ ℋ → ( 𝑆 ‘ ( 0hop ‘ 𝑥 ) ) = 0ℎ ) |
| 18 |
1
|
lnopfi |
⊢ 𝑆 : ℋ ⟶ ℋ |
| 19 |
18 9
|
hocoi |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑆 ∘ 0hop ) ‘ 𝑥 ) = ( 𝑆 ‘ ( 0hop ‘ 𝑥 ) ) ) |
| 20 |
17 19 14
|
3eqtr4d |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑆 ∘ 0hop ) ‘ 𝑥 ) = ( 0hop ‘ 𝑥 ) ) |
| 21 |
13 20
|
mprgbir |
⊢ ( 𝑆 ∘ 0hop ) = 0hop |
| 22 |
3 21
|
eqtrdi |
⊢ ( 𝑇 = 0hop → ( 𝑆 ∘ 𝑇 ) = 0hop ) |
| 23 |
2
|
nmlnop0iHIL |
⊢ ( ( normop ‘ 𝑇 ) = 0 ↔ 𝑇 = 0hop ) |
| 24 |
1 2
|
lnopcoi |
⊢ ( 𝑆 ∘ 𝑇 ) ∈ LinOp |
| 25 |
24
|
nmlnop0iHIL |
⊢ ( ( normop ‘ ( 𝑆 ∘ 𝑇 ) ) = 0 ↔ ( 𝑆 ∘ 𝑇 ) = 0hop ) |
| 26 |
22 23 25
|
3imtr4i |
⊢ ( ( normop ‘ 𝑇 ) = 0 → ( normop ‘ ( 𝑆 ∘ 𝑇 ) ) = 0 ) |