Metamath Proof Explorer


Theorem lnopco0i

Description: The composition of a linear operator with one whose norm is zero. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypotheses lnopco.1 𝑆 ∈ LinOp
lnopco.2 𝑇 ∈ LinOp
Assertion lnopco0i ( ( normop𝑇 ) = 0 → ( normop ‘ ( 𝑆𝑇 ) ) = 0 )

Proof

Step Hyp Ref Expression
1 lnopco.1 𝑆 ∈ LinOp
2 lnopco.2 𝑇 ∈ LinOp
3 coeq2 ( 𝑇 = 0hop → ( 𝑆𝑇 ) = ( 𝑆 ∘ 0hop ) )
4 0lnop 0hop ∈ LinOp
5 1 4 lnopcoi ( 𝑆 ∘ 0hop ) ∈ LinOp
6 5 lnopfi ( 𝑆 ∘ 0hop ) : ℋ ⟶ ℋ
7 ffn ( ( 𝑆 ∘ 0hop ) : ℋ ⟶ ℋ → ( 𝑆 ∘ 0hop ) Fn ℋ )
8 6 7 ax-mp ( 𝑆 ∘ 0hop ) Fn ℋ
9 ho0f 0hop : ℋ ⟶ ℋ
10 ffn ( 0hop : ℋ ⟶ ℋ → 0hop Fn ℋ )
11 9 10 ax-mp 0hop Fn ℋ
12 eqfnfv ( ( ( 𝑆 ∘ 0hop ) Fn ℋ ∧ 0hop Fn ℋ ) → ( ( 𝑆 ∘ 0hop ) = 0hop ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑆 ∘ 0hop ) ‘ 𝑥 ) = ( 0hop𝑥 ) ) )
13 8 11 12 mp2an ( ( 𝑆 ∘ 0hop ) = 0hop ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑆 ∘ 0hop ) ‘ 𝑥 ) = ( 0hop𝑥 ) )
14 ho0val ( 𝑥 ∈ ℋ → ( 0hop𝑥 ) = 0 )
15 14 fveq2d ( 𝑥 ∈ ℋ → ( 𝑆 ‘ ( 0hop𝑥 ) ) = ( 𝑆 ‘ 0 ) )
16 1 lnop0i ( 𝑆 ‘ 0 ) = 0
17 15 16 eqtrdi ( 𝑥 ∈ ℋ → ( 𝑆 ‘ ( 0hop𝑥 ) ) = 0 )
18 1 lnopfi 𝑆 : ℋ ⟶ ℋ
19 18 9 hocoi ( 𝑥 ∈ ℋ → ( ( 𝑆 ∘ 0hop ) ‘ 𝑥 ) = ( 𝑆 ‘ ( 0hop𝑥 ) ) )
20 17 19 14 3eqtr4d ( 𝑥 ∈ ℋ → ( ( 𝑆 ∘ 0hop ) ‘ 𝑥 ) = ( 0hop𝑥 ) )
21 13 20 mprgbir ( 𝑆 ∘ 0hop ) = 0hop
22 3 21 eqtrdi ( 𝑇 = 0hop → ( 𝑆𝑇 ) = 0hop )
23 2 nmlnop0iHIL ( ( normop𝑇 ) = 0 ↔ 𝑇 = 0hop )
24 1 2 lnopcoi ( 𝑆𝑇 ) ∈ LinOp
25 24 nmlnop0iHIL ( ( normop ‘ ( 𝑆𝑇 ) ) = 0 ↔ ( 𝑆𝑇 ) = 0hop )
26 22 23 25 3imtr4i ( ( normop𝑇 ) = 0 → ( normop ‘ ( 𝑆𝑇 ) ) = 0 )