Step |
Hyp |
Ref |
Expression |
1 |
|
lnopco.1 |
⊢ 𝑆 ∈ LinOp |
2 |
|
lnopco.2 |
⊢ 𝑇 ∈ LinOp |
3 |
1
|
lnopfi |
⊢ 𝑆 : ℋ ⟶ ℋ |
4 |
2
|
lnopfi |
⊢ 𝑇 : ℋ ⟶ ℋ |
5 |
3 4
|
hocofi |
⊢ ( 𝑆 ∘ 𝑇 ) : ℋ ⟶ ℋ |
6 |
2
|
lnopli |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
7 |
6
|
fveq2d |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑆 ‘ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) = ( 𝑆 ‘ ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
8 |
|
id |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ∈ ℂ ) |
9 |
4
|
ffvelrni |
⊢ ( 𝑦 ∈ ℋ → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
10 |
4
|
ffvelrni |
⊢ ( 𝑧 ∈ ℋ → ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) |
11 |
1
|
lnopli |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) → ( 𝑆 ‘ ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) = ( ( 𝑥 ·ℎ ( 𝑆 ‘ ( 𝑇 ‘ 𝑦 ) ) ) +ℎ ( 𝑆 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) |
12 |
8 9 10 11
|
syl3an |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑆 ‘ ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) = ( ( 𝑥 ·ℎ ( 𝑆 ‘ ( 𝑇 ‘ 𝑦 ) ) ) +ℎ ( 𝑆 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) |
13 |
7 12
|
eqtrd |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑆 ‘ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) = ( ( 𝑥 ·ℎ ( 𝑆 ‘ ( 𝑇 ‘ 𝑦 ) ) ) +ℎ ( 𝑆 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) |
14 |
13
|
3expa |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( 𝑆 ‘ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) = ( ( 𝑥 ·ℎ ( 𝑆 ‘ ( 𝑇 ‘ 𝑦 ) ) ) +ℎ ( 𝑆 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) |
15 |
|
hvmulcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) |
16 |
|
hvaddcl |
⊢ ( ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) |
17 |
15 16
|
sylan |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) |
18 |
3 4
|
hocoi |
⊢ ( ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ → ( ( 𝑆 ∘ 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( 𝑆 ‘ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) ) |
19 |
17 18
|
syl |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑆 ∘ 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( 𝑆 ‘ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) ) |
20 |
3 4
|
hocoi |
⊢ ( 𝑦 ∈ ℋ → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑦 ) = ( 𝑆 ‘ ( 𝑇 ‘ 𝑦 ) ) ) |
21 |
20
|
oveq2d |
⊢ ( 𝑦 ∈ ℋ → ( 𝑥 ·ℎ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑦 ) ) = ( 𝑥 ·ℎ ( 𝑆 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
22 |
21
|
adantl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑦 ) ) = ( 𝑥 ·ℎ ( 𝑆 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
23 |
3 4
|
hocoi |
⊢ ( 𝑧 ∈ ℋ → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑧 ) = ( 𝑆 ‘ ( 𝑇 ‘ 𝑧 ) ) ) |
24 |
22 23
|
oveqan12d |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑆 ‘ ( 𝑇 ‘ 𝑦 ) ) ) +ℎ ( 𝑆 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) |
25 |
14 19 24
|
3eqtr4d |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑆 ∘ 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑧 ) ) ) |
26 |
25
|
3impa |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑆 ∘ 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑧 ) ) ) |
27 |
26
|
rgen3 |
⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑆 ∘ 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑧 ) ) |
28 |
|
ellnop |
⊢ ( ( 𝑆 ∘ 𝑇 ) ∈ LinOp ↔ ( ( 𝑆 ∘ 𝑇 ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑆 ∘ 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑧 ) ) ) ) |
29 |
5 27 28
|
mpbir2an |
⊢ ( 𝑆 ∘ 𝑇 ) ∈ LinOp |