Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
⊢ ( 𝑇 = if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) → ( 𝑇 ∈ ContOp ↔ if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) ∈ ContOp ) ) |
2 |
|
fveq1 |
⊢ ( 𝑇 = if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) → ( 𝑇 ‘ 𝑦 ) = ( if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) |
3 |
2
|
fveq2d |
⊢ ( 𝑇 = if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) → ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = ( normℎ ‘ ( if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) ) |
4 |
3
|
breq1d |
⊢ ( 𝑇 = if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ↔ ( normℎ ‘ ( if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ) |
5 |
4
|
rexralbidv |
⊢ ( 𝑇 = if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ) |
6 |
1 5
|
bibi12d |
⊢ ( 𝑇 = if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) → ( ( 𝑇 ∈ ContOp ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ↔ ( if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) ∈ ContOp ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ) ) |
7 |
|
idlnop |
⊢ ( I ↾ ℋ ) ∈ LinOp |
8 |
7
|
elimel |
⊢ if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp |
9 |
8
|
lnopconi |
⊢ ( if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) ∈ ContOp ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( if ( 𝑇 ∈ LinOp , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) |
10 |
6 9
|
dedth |
⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ∈ ContOp ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ) |