Step |
Hyp |
Ref |
Expression |
1 |
|
lnopcon.1 |
⊢ 𝑇 ∈ LinOp |
2 |
|
nmcopex |
⊢ ( ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ) → ( normop ‘ 𝑇 ) ∈ ℝ ) |
3 |
1 2
|
mpan |
⊢ ( 𝑇 ∈ ContOp → ( normop ‘ 𝑇 ) ∈ ℝ ) |
4 |
|
nmcoplb |
⊢ ( ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) |
5 |
1 4
|
mp3an1 |
⊢ ( ( 𝑇 ∈ ContOp ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) |
6 |
1
|
lnopfi |
⊢ 𝑇 : ℋ ⟶ ℋ |
7 |
|
elcnop |
⊢ ( 𝑇 ∈ ContOp ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑤 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) ) |
8 |
6 7
|
mpbiran |
⊢ ( 𝑇 ∈ ContOp ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑤 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
9 |
6
|
ffvelrni |
⊢ ( 𝑦 ∈ ℋ → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
10 |
|
normcl |
⊢ ( ( 𝑇 ‘ 𝑦 ) ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) |
11 |
9 10
|
syl |
⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) |
12 |
1
|
lnopsubi |
⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑤 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
13 |
3 5 8 11 12
|
lnconi |
⊢ ( 𝑇 ∈ ContOp ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) |