Step |
Hyp |
Ref |
Expression |
1 |
|
fveq1 |
⊢ ( 𝑇 = if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) → ( 𝑇 ‘ 𝑥 ) = ( if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) ‘ 𝑥 ) ) |
2 |
1
|
oveq1d |
⊢ ( 𝑇 = if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = ( ( if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) ‘ 𝑥 ) ·ih 𝑥 ) ) |
3 |
2
|
eqeq1d |
⊢ ( 𝑇 = if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) → ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ↔ ( ( if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
4 |
3
|
ralbidv |
⊢ ( 𝑇 = if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) → ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ↔ ∀ 𝑥 ∈ ℋ ( ( if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
5 |
|
eqeq1 |
⊢ ( 𝑇 = if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) → ( 𝑇 = 𝑈 ↔ if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) = 𝑈 ) ) |
6 |
4 5
|
bibi12d |
⊢ ( 𝑇 = if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) → ( ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ↔ 𝑇 = 𝑈 ) ↔ ( ∀ 𝑥 ∈ ℋ ( ( if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ↔ if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) = 𝑈 ) ) ) |
7 |
|
fveq1 |
⊢ ( 𝑈 = if ( 𝑈 ∈ LinOp , 𝑈 , 0hop ) → ( 𝑈 ‘ 𝑥 ) = ( if ( 𝑈 ∈ LinOp , 𝑈 , 0hop ) ‘ 𝑥 ) ) |
8 |
7
|
oveq1d |
⊢ ( 𝑈 = if ( 𝑈 ∈ LinOp , 𝑈 , 0hop ) → ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) = ( ( if ( 𝑈 ∈ LinOp , 𝑈 , 0hop ) ‘ 𝑥 ) ·ih 𝑥 ) ) |
9 |
8
|
eqeq2d |
⊢ ( 𝑈 = if ( 𝑈 ∈ LinOp , 𝑈 , 0hop ) → ( ( ( if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ↔ ( ( if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( if ( 𝑈 ∈ LinOp , 𝑈 , 0hop ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
10 |
9
|
ralbidv |
⊢ ( 𝑈 = if ( 𝑈 ∈ LinOp , 𝑈 , 0hop ) → ( ∀ 𝑥 ∈ ℋ ( ( if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ↔ ∀ 𝑥 ∈ ℋ ( ( if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( if ( 𝑈 ∈ LinOp , 𝑈 , 0hop ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
11 |
|
eqeq2 |
⊢ ( 𝑈 = if ( 𝑈 ∈ LinOp , 𝑈 , 0hop ) → ( if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) = 𝑈 ↔ if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) = if ( 𝑈 ∈ LinOp , 𝑈 , 0hop ) ) ) |
12 |
10 11
|
bibi12d |
⊢ ( 𝑈 = if ( 𝑈 ∈ LinOp , 𝑈 , 0hop ) → ( ( ∀ 𝑥 ∈ ℋ ( ( if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ↔ if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) = 𝑈 ) ↔ ( ∀ 𝑥 ∈ ℋ ( ( if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( if ( 𝑈 ∈ LinOp , 𝑈 , 0hop ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) = if ( 𝑈 ∈ LinOp , 𝑈 , 0hop ) ) ) ) |
13 |
|
0lnop |
⊢ 0hop ∈ LinOp |
14 |
13
|
elimel |
⊢ if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) ∈ LinOp |
15 |
13
|
elimel |
⊢ if ( 𝑈 ∈ LinOp , 𝑈 , 0hop ) ∈ LinOp |
16 |
14 15
|
lnopeqi |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( if ( 𝑈 ∈ LinOp , 𝑈 , 0hop ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) = if ( 𝑈 ∈ LinOp , 𝑈 , 0hop ) ) |
17 |
6 12 16
|
dedth2h |
⊢ ( ( 𝑇 ∈ LinOp ∧ 𝑈 ∈ LinOp ) → ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ↔ 𝑇 = 𝑈 ) ) |