| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lnopeq0.1 | 
							⊢ 𝑇  ∈  LinOp  | 
						
						
							| 2 | 
							
								1
							 | 
							lnopeq0lem2 | 
							⊢ ( ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑧 )  =  ( ( ( ( ( 𝑇 ‘ ( 𝑦  +ℎ  𝑧 ) )  ·ih  ( 𝑦  +ℎ  𝑧 ) )  −  ( ( 𝑇 ‘ ( 𝑦  −ℎ  𝑧 ) )  ·ih  ( 𝑦  −ℎ  𝑧 ) ) )  +  ( i  ·  ( ( ( 𝑇 ‘ ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) )  ·ih  ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) )  −  ( ( 𝑇 ‘ ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) )  ·ih  ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) ) ) ) )  /  4 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantl | 
							⊢ ( ( ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0  ∧  ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ ) )  →  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑧 )  =  ( ( ( ( ( 𝑇 ‘ ( 𝑦  +ℎ  𝑧 ) )  ·ih  ( 𝑦  +ℎ  𝑧 ) )  −  ( ( 𝑇 ‘ ( 𝑦  −ℎ  𝑧 ) )  ·ih  ( 𝑦  −ℎ  𝑧 ) ) )  +  ( i  ·  ( ( ( 𝑇 ‘ ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) )  ·ih  ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) )  −  ( ( 𝑇 ‘ ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) )  ·ih  ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) ) ) ) )  /  4 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							hvaddcl | 
							⊢ ( ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( 𝑦  +ℎ  𝑧 )  ∈   ℋ )  | 
						
						
							| 5 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  ( 𝑦  +ℎ  𝑧 )  →  ( 𝑇 ‘ 𝑥 )  =  ( 𝑇 ‘ ( 𝑦  +ℎ  𝑧 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							id | 
							⊢ ( 𝑥  =  ( 𝑦  +ℎ  𝑧 )  →  𝑥  =  ( 𝑦  +ℎ  𝑧 ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							oveq12d | 
							⊢ ( 𝑥  =  ( 𝑦  +ℎ  𝑧 )  →  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  ( ( 𝑇 ‘ ( 𝑦  +ℎ  𝑧 ) )  ·ih  ( 𝑦  +ℎ  𝑧 ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							eqeq1d | 
							⊢ ( 𝑥  =  ( 𝑦  +ℎ  𝑧 )  →  ( ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0  ↔  ( ( 𝑇 ‘ ( 𝑦  +ℎ  𝑧 ) )  ·ih  ( 𝑦  +ℎ  𝑧 ) )  =  0 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							rspccva | 
							⊢ ( ( ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0  ∧  ( 𝑦  +ℎ  𝑧 )  ∈   ℋ )  →  ( ( 𝑇 ‘ ( 𝑦  +ℎ  𝑧 ) )  ·ih  ( 𝑦  +ℎ  𝑧 ) )  =  0 )  | 
						
						
							| 10 | 
							
								4 9
							 | 
							sylan2 | 
							⊢ ( ( ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0  ∧  ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ ) )  →  ( ( 𝑇 ‘ ( 𝑦  +ℎ  𝑧 ) )  ·ih  ( 𝑦  +ℎ  𝑧 ) )  =  0 )  | 
						
						
							| 11 | 
							
								
							 | 
							hvsubcl | 
							⊢ ( ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( 𝑦  −ℎ  𝑧 )  ∈   ℋ )  | 
						
						
							| 12 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  ( 𝑦  −ℎ  𝑧 )  →  ( 𝑇 ‘ 𝑥 )  =  ( 𝑇 ‘ ( 𝑦  −ℎ  𝑧 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							id | 
							⊢ ( 𝑥  =  ( 𝑦  −ℎ  𝑧 )  →  𝑥  =  ( 𝑦  −ℎ  𝑧 ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							oveq12d | 
							⊢ ( 𝑥  =  ( 𝑦  −ℎ  𝑧 )  →  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  ( ( 𝑇 ‘ ( 𝑦  −ℎ  𝑧 ) )  ·ih  ( 𝑦  −ℎ  𝑧 ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							eqeq1d | 
							⊢ ( 𝑥  =  ( 𝑦  −ℎ  𝑧 )  →  ( ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0  ↔  ( ( 𝑇 ‘ ( 𝑦  −ℎ  𝑧 ) )  ·ih  ( 𝑦  −ℎ  𝑧 ) )  =  0 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							rspccva | 
							⊢ ( ( ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0  ∧  ( 𝑦  −ℎ  𝑧 )  ∈   ℋ )  →  ( ( 𝑇 ‘ ( 𝑦  −ℎ  𝑧 ) )  ·ih  ( 𝑦  −ℎ  𝑧 ) )  =  0 )  | 
						
						
							| 17 | 
							
								11 16
							 | 
							sylan2 | 
							⊢ ( ( ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0  ∧  ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ ) )  →  ( ( 𝑇 ‘ ( 𝑦  −ℎ  𝑧 ) )  ·ih  ( 𝑦  −ℎ  𝑧 ) )  =  0 )  | 
						
						
							| 18 | 
							
								10 17
							 | 
							oveq12d | 
							⊢ ( ( ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0  ∧  ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ ) )  →  ( ( ( 𝑇 ‘ ( 𝑦  +ℎ  𝑧 ) )  ·ih  ( 𝑦  +ℎ  𝑧 ) )  −  ( ( 𝑇 ‘ ( 𝑦  −ℎ  𝑧 ) )  ·ih  ( 𝑦  −ℎ  𝑧 ) ) )  =  ( 0  −  0 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							0m0e0 | 
							⊢ ( 0  −  0 )  =  0  | 
						
						
							| 20 | 
							
								18 19
							 | 
							eqtrdi | 
							⊢ ( ( ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0  ∧  ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ ) )  →  ( ( ( 𝑇 ‘ ( 𝑦  +ℎ  𝑧 ) )  ·ih  ( 𝑦  +ℎ  𝑧 ) )  −  ( ( 𝑇 ‘ ( 𝑦  −ℎ  𝑧 ) )  ·ih  ( 𝑦  −ℎ  𝑧 ) ) )  =  0 )  | 
						
						
							| 21 | 
							
								
							 | 
							ax-icn | 
							⊢ i  ∈  ℂ  | 
						
						
							| 22 | 
							
								
							 | 
							hvmulcl | 
							⊢ ( ( i  ∈  ℂ  ∧  𝑧  ∈   ℋ )  →  ( i  ·ℎ  𝑧 )  ∈   ℋ )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							mpan | 
							⊢ ( 𝑧  ∈   ℋ  →  ( i  ·ℎ  𝑧 )  ∈   ℋ )  | 
						
						
							| 24 | 
							
								
							 | 
							hvaddcl | 
							⊢ ( ( 𝑦  ∈   ℋ  ∧  ( i  ·ℎ  𝑧 )  ∈   ℋ )  →  ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) )  ∈   ℋ )  | 
						
						
							| 25 | 
							
								23 24
							 | 
							sylan2 | 
							⊢ ( ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) )  ∈   ℋ )  | 
						
						
							| 26 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) )  →  ( 𝑇 ‘ 𝑥 )  =  ( 𝑇 ‘ ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							id | 
							⊢ ( 𝑥  =  ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) )  →  𝑥  =  ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							oveq12d | 
							⊢ ( 𝑥  =  ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) )  →  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  ( ( 𝑇 ‘ ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) )  ·ih  ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							eqeq1d | 
							⊢ ( 𝑥  =  ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) )  →  ( ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0  ↔  ( ( 𝑇 ‘ ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) )  ·ih  ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) )  =  0 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							rspccva | 
							⊢ ( ( ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0  ∧  ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) )  ∈   ℋ )  →  ( ( 𝑇 ‘ ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) )  ·ih  ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) )  =  0 )  | 
						
						
							| 31 | 
							
								25 30
							 | 
							sylan2 | 
							⊢ ( ( ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0  ∧  ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ ) )  →  ( ( 𝑇 ‘ ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) )  ·ih  ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) )  =  0 )  | 
						
						
							| 32 | 
							
								
							 | 
							hvsubcl | 
							⊢ ( ( 𝑦  ∈   ℋ  ∧  ( i  ·ℎ  𝑧 )  ∈   ℋ )  →  ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) )  ∈   ℋ )  | 
						
						
							| 33 | 
							
								23 32
							 | 
							sylan2 | 
							⊢ ( ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) )  ∈   ℋ )  | 
						
						
							| 34 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) )  →  ( 𝑇 ‘ 𝑥 )  =  ( 𝑇 ‘ ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) ) )  | 
						
						
							| 35 | 
							
								
							 | 
							id | 
							⊢ ( 𝑥  =  ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) )  →  𝑥  =  ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							oveq12d | 
							⊢ ( 𝑥  =  ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) )  →  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  ( ( 𝑇 ‘ ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) )  ·ih  ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							eqeq1d | 
							⊢ ( 𝑥  =  ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) )  →  ( ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0  ↔  ( ( 𝑇 ‘ ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) )  ·ih  ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) )  =  0 ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							rspccva | 
							⊢ ( ( ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0  ∧  ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) )  ∈   ℋ )  →  ( ( 𝑇 ‘ ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) )  ·ih  ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) )  =  0 )  | 
						
						
							| 39 | 
							
								33 38
							 | 
							sylan2 | 
							⊢ ( ( ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0  ∧  ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ ) )  →  ( ( 𝑇 ‘ ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) )  ·ih  ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) )  =  0 )  | 
						
						
							| 40 | 
							
								31 39
							 | 
							oveq12d | 
							⊢ ( ( ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0  ∧  ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ ) )  →  ( ( ( 𝑇 ‘ ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) )  ·ih  ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) )  −  ( ( 𝑇 ‘ ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) )  ·ih  ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) ) )  =  ( 0  −  0 ) )  | 
						
						
							| 41 | 
							
								40 19
							 | 
							eqtrdi | 
							⊢ ( ( ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0  ∧  ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ ) )  →  ( ( ( 𝑇 ‘ ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) )  ·ih  ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) )  −  ( ( 𝑇 ‘ ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) )  ·ih  ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) ) )  =  0 )  | 
						
						
							| 42 | 
							
								41
							 | 
							oveq2d | 
							⊢ ( ( ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0  ∧  ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ ) )  →  ( i  ·  ( ( ( 𝑇 ‘ ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) )  ·ih  ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) )  −  ( ( 𝑇 ‘ ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) )  ·ih  ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) ) ) )  =  ( i  ·  0 ) )  | 
						
						
							| 43 | 
							
								
							 | 
							it0e0 | 
							⊢ ( i  ·  0 )  =  0  | 
						
						
							| 44 | 
							
								42 43
							 | 
							eqtrdi | 
							⊢ ( ( ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0  ∧  ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ ) )  →  ( i  ·  ( ( ( 𝑇 ‘ ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) )  ·ih  ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) )  −  ( ( 𝑇 ‘ ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) )  ·ih  ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) ) ) )  =  0 )  | 
						
						
							| 45 | 
							
								20 44
							 | 
							oveq12d | 
							⊢ ( ( ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0  ∧  ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ ) )  →  ( ( ( ( 𝑇 ‘ ( 𝑦  +ℎ  𝑧 ) )  ·ih  ( 𝑦  +ℎ  𝑧 ) )  −  ( ( 𝑇 ‘ ( 𝑦  −ℎ  𝑧 ) )  ·ih  ( 𝑦  −ℎ  𝑧 ) ) )  +  ( i  ·  ( ( ( 𝑇 ‘ ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) )  ·ih  ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) )  −  ( ( 𝑇 ‘ ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) )  ·ih  ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) ) ) ) )  =  ( 0  +  0 ) )  | 
						
						
							| 46 | 
							
								
							 | 
							00id | 
							⊢ ( 0  +  0 )  =  0  | 
						
						
							| 47 | 
							
								45 46
							 | 
							eqtrdi | 
							⊢ ( ( ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0  ∧  ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ ) )  →  ( ( ( ( 𝑇 ‘ ( 𝑦  +ℎ  𝑧 ) )  ·ih  ( 𝑦  +ℎ  𝑧 ) )  −  ( ( 𝑇 ‘ ( 𝑦  −ℎ  𝑧 ) )  ·ih  ( 𝑦  −ℎ  𝑧 ) ) )  +  ( i  ·  ( ( ( 𝑇 ‘ ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) )  ·ih  ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) )  −  ( ( 𝑇 ‘ ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) )  ·ih  ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) ) ) ) )  =  0 )  | 
						
						
							| 48 | 
							
								47
							 | 
							oveq1d | 
							⊢ ( ( ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0  ∧  ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ ) )  →  ( ( ( ( ( 𝑇 ‘ ( 𝑦  +ℎ  𝑧 ) )  ·ih  ( 𝑦  +ℎ  𝑧 ) )  −  ( ( 𝑇 ‘ ( 𝑦  −ℎ  𝑧 ) )  ·ih  ( 𝑦  −ℎ  𝑧 ) ) )  +  ( i  ·  ( ( ( 𝑇 ‘ ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) )  ·ih  ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) )  −  ( ( 𝑇 ‘ ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) )  ·ih  ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) ) ) ) )  /  4 )  =  ( 0  /  4 ) )  | 
						
						
							| 49 | 
							
								
							 | 
							4cn | 
							⊢ 4  ∈  ℂ  | 
						
						
							| 50 | 
							
								
							 | 
							4ne0 | 
							⊢ 4  ≠  0  | 
						
						
							| 51 | 
							
								49 50
							 | 
							div0i | 
							⊢ ( 0  /  4 )  =  0  | 
						
						
							| 52 | 
							
								48 51
							 | 
							eqtrdi | 
							⊢ ( ( ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0  ∧  ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ ) )  →  ( ( ( ( ( 𝑇 ‘ ( 𝑦  +ℎ  𝑧 ) )  ·ih  ( 𝑦  +ℎ  𝑧 ) )  −  ( ( 𝑇 ‘ ( 𝑦  −ℎ  𝑧 ) )  ·ih  ( 𝑦  −ℎ  𝑧 ) ) )  +  ( i  ·  ( ( ( 𝑇 ‘ ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) )  ·ih  ( 𝑦  +ℎ  ( i  ·ℎ  𝑧 ) ) )  −  ( ( 𝑇 ‘ ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) )  ·ih  ( 𝑦  −ℎ  ( i  ·ℎ  𝑧 ) ) ) ) ) )  /  4 )  =  0 )  | 
						
						
							| 53 | 
							
								3 52
							 | 
							eqtrd | 
							⊢ ( ( ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0  ∧  ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ ) )  →  ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑧 )  =  0 )  | 
						
						
							| 54 | 
							
								53
							 | 
							ralrimivva | 
							⊢ ( ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0  →  ∀ 𝑦  ∈   ℋ ∀ 𝑧  ∈   ℋ ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑧 )  =  0 )  | 
						
						
							| 55 | 
							
								1
							 | 
							lnopfi | 
							⊢ 𝑇 :  ℋ ⟶  ℋ  | 
						
						
							| 56 | 
							
								55
							 | 
							ho01i | 
							⊢ ( ∀ 𝑦  ∈   ℋ ∀ 𝑧  ∈   ℋ ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑧 )  =  0  ↔  𝑇  =   0hop  )  | 
						
						
							| 57 | 
							
								54 56
							 | 
							sylib | 
							⊢ ( ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0  →  𝑇  =   0hop  )  | 
						
						
							| 58 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑇  =   0hop   →  ( 𝑇 ‘ 𝑥 )  =  (  0hop  ‘ 𝑥 ) )  | 
						
						
							| 59 | 
							
								
							 | 
							ho0val | 
							⊢ ( 𝑥  ∈   ℋ  →  (  0hop  ‘ 𝑥 )  =  0ℎ )  | 
						
						
							| 60 | 
							
								58 59
							 | 
							sylan9eq | 
							⊢ ( ( 𝑇  =   0hop   ∧  𝑥  ∈   ℋ )  →  ( 𝑇 ‘ 𝑥 )  =  0ℎ )  | 
						
						
							| 61 | 
							
								60
							 | 
							oveq1d | 
							⊢ ( ( 𝑇  =   0hop   ∧  𝑥  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  ( 0ℎ  ·ih  𝑥 ) )  | 
						
						
							| 62 | 
							
								
							 | 
							hi01 | 
							⊢ ( 𝑥  ∈   ℋ  →  ( 0ℎ  ·ih  𝑥 )  =  0 )  | 
						
						
							| 63 | 
							
								62
							 | 
							adantl | 
							⊢ ( ( 𝑇  =   0hop   ∧  𝑥  ∈   ℋ )  →  ( 0ℎ  ·ih  𝑥 )  =  0 )  | 
						
						
							| 64 | 
							
								61 63
							 | 
							eqtrd | 
							⊢ ( ( 𝑇  =   0hop   ∧  𝑥  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0 )  | 
						
						
							| 65 | 
							
								64
							 | 
							ralrimiva | 
							⊢ ( 𝑇  =   0hop   →  ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0 )  | 
						
						
							| 66 | 
							
								57 65
							 | 
							impbii | 
							⊢ ( ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  0  ↔  𝑇  =   0hop  )  |