| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lnopeq.1 |
⊢ 𝑇 ∈ LinOp |
| 2 |
|
lnopeq.2 |
⊢ 𝑈 ∈ LinOp |
| 3 |
1
|
lnopfi |
⊢ 𝑇 : ℋ ⟶ ℋ |
| 4 |
3
|
ffvelcdmi |
⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 5 |
|
hicl |
⊢ ( ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∈ ℂ ) |
| 6 |
4 5
|
mpancom |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∈ ℂ ) |
| 7 |
2
|
lnopfi |
⊢ 𝑈 : ℋ ⟶ ℋ |
| 8 |
7
|
ffvelcdmi |
⊢ ( 𝑥 ∈ ℋ → ( 𝑈 ‘ 𝑥 ) ∈ ℋ ) |
| 9 |
|
hicl |
⊢ ( ( ( 𝑈 ‘ 𝑥 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ∈ ℂ ) |
| 10 |
8 9
|
mpancom |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ∈ ℂ ) |
| 11 |
6 10
|
subeq0ad |
⊢ ( 𝑥 ∈ ℋ → ( ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) − ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) = 0 ↔ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 12 |
|
hodval |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 −op 𝑈 ) ‘ 𝑥 ) = ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑈 ‘ 𝑥 ) ) ) |
| 13 |
3 7 12
|
mp3an12 |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑇 −op 𝑈 ) ‘ 𝑥 ) = ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑈 ‘ 𝑥 ) ) ) |
| 14 |
13
|
oveq1d |
⊢ ( 𝑥 ∈ ℋ → ( ( ( 𝑇 −op 𝑈 ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑈 ‘ 𝑥 ) ) ·ih 𝑥 ) ) |
| 15 |
|
id |
⊢ ( 𝑥 ∈ ℋ → 𝑥 ∈ ℋ ) |
| 16 |
|
his2sub |
⊢ ( ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑈 ‘ 𝑥 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑈 ‘ 𝑥 ) ) ·ih 𝑥 ) = ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) − ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 17 |
4 8 15 16
|
syl3anc |
⊢ ( 𝑥 ∈ ℋ → ( ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑈 ‘ 𝑥 ) ) ·ih 𝑥 ) = ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) − ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 18 |
14 17
|
eqtr2d |
⊢ ( 𝑥 ∈ ℋ → ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) − ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) = ( ( ( 𝑇 −op 𝑈 ) ‘ 𝑥 ) ·ih 𝑥 ) ) |
| 19 |
18
|
eqeq1d |
⊢ ( 𝑥 ∈ ℋ → ( ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) − ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) = 0 ↔ ( ( ( 𝑇 −op 𝑈 ) ‘ 𝑥 ) ·ih 𝑥 ) = 0 ) ) |
| 20 |
11 19
|
bitr3d |
⊢ ( 𝑥 ∈ ℋ → ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ↔ ( ( ( 𝑇 −op 𝑈 ) ‘ 𝑥 ) ·ih 𝑥 ) = 0 ) ) |
| 21 |
20
|
ralbiia |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ↔ ∀ 𝑥 ∈ ℋ ( ( ( 𝑇 −op 𝑈 ) ‘ 𝑥 ) ·ih 𝑥 ) = 0 ) |
| 22 |
1 2
|
lnophdi |
⊢ ( 𝑇 −op 𝑈 ) ∈ LinOp |
| 23 |
22
|
lnopeq0i |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( ( 𝑇 −op 𝑈 ) ‘ 𝑥 ) ·ih 𝑥 ) = 0 ↔ ( 𝑇 −op 𝑈 ) = 0hop ) |
| 24 |
3 7
|
hosubeq0i |
⊢ ( ( 𝑇 −op 𝑈 ) = 0hop ↔ 𝑇 = 𝑈 ) |
| 25 |
21 23 24
|
3bitri |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ↔ 𝑇 = 𝑈 ) |