Metamath Proof Explorer


Theorem lnopf

Description: A linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 18-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion lnopf ( 𝑇 ∈ LinOp → 𝑇 : ℋ ⟶ ℋ )

Proof

Step Hyp Ref Expression
1 ellnop ( 𝑇 ∈ LinOp ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 · ( 𝑇𝑦 ) ) + ( 𝑇𝑧 ) ) ) )
2 1 simplbi ( 𝑇 ∈ LinOp → 𝑇 : ℋ ⟶ ℋ )