Metamath Proof Explorer


Theorem lnopfi

Description: A linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 23-Jan-2006) (New usage is discouraged.)

Ref Expression
Hypothesis lnopl.1 𝑇 ∈ LinOp
Assertion lnopfi 𝑇 : ℋ ⟶ ℋ

Proof

Step Hyp Ref Expression
1 lnopl.1 𝑇 ∈ LinOp
2 lnopf ( 𝑇 ∈ LinOp → 𝑇 : ℋ ⟶ ℋ )
3 1 2 ax-mp 𝑇 : ℋ ⟶ ℋ