Metamath Proof Explorer


Theorem lnophdi

Description: The difference of two linear operators is linear. (Contributed by NM, 27-Jul-2006) (New usage is discouraged.)

Ref Expression
Hypotheses lnopco.1 𝑆 ∈ LinOp
lnopco.2 𝑇 ∈ LinOp
Assertion lnophdi ( 𝑆op 𝑇 ) ∈ LinOp

Proof

Step Hyp Ref Expression
1 lnopco.1 𝑆 ∈ LinOp
2 lnopco.2 𝑇 ∈ LinOp
3 1 lnopfi 𝑆 : ℋ ⟶ ℋ
4 2 lnopfi 𝑇 : ℋ ⟶ ℋ
5 3 4 honegsubi ( 𝑆 +op ( - 1 ·op 𝑇 ) ) = ( 𝑆op 𝑇 )
6 neg1cn - 1 ∈ ℂ
7 2 lnopmi ( - 1 ∈ ℂ → ( - 1 ·op 𝑇 ) ∈ LinOp )
8 6 7 ax-mp ( - 1 ·op 𝑇 ) ∈ LinOp
9 1 8 lnophsi ( 𝑆 +op ( - 1 ·op 𝑇 ) ) ∈ LinOp
10 5 9 eqeltrri ( 𝑆op 𝑇 ) ∈ LinOp