Step |
Hyp |
Ref |
Expression |
1 |
|
lnophm.1 |
⊢ 𝑇 ∈ LinOp |
2 |
|
lnophm.2 |
⊢ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ |
3 |
1
|
lnopfi |
⊢ 𝑇 : ℋ ⟶ ℋ |
4 |
|
oveq1 |
⊢ ( 𝑦 = if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) → ( 𝑦 ·ih ( 𝑇 ‘ 𝑧 ) ) = ( if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ·ih ( 𝑇 ‘ 𝑧 ) ) ) |
5 |
|
fveq2 |
⊢ ( 𝑦 = if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) → ( 𝑇 ‘ 𝑦 ) = ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ) ) |
6 |
5
|
oveq1d |
⊢ ( 𝑦 = if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) → ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑧 ) = ( ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ) ·ih 𝑧 ) ) |
7 |
4 6
|
eqeq12d |
⊢ ( 𝑦 = if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) → ( ( 𝑦 ·ih ( 𝑇 ‘ 𝑧 ) ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑧 ) ↔ ( if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ·ih ( 𝑇 ‘ 𝑧 ) ) = ( ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ) ·ih 𝑧 ) ) ) |
8 |
|
fveq2 |
⊢ ( 𝑧 = if ( 𝑧 ∈ ℋ , 𝑧 , 0ℎ ) → ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ if ( 𝑧 ∈ ℋ , 𝑧 , 0ℎ ) ) ) |
9 |
8
|
oveq2d |
⊢ ( 𝑧 = if ( 𝑧 ∈ ℋ , 𝑧 , 0ℎ ) → ( if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ·ih ( 𝑇 ‘ 𝑧 ) ) = ( if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ·ih ( 𝑇 ‘ if ( 𝑧 ∈ ℋ , 𝑧 , 0ℎ ) ) ) ) |
10 |
|
oveq2 |
⊢ ( 𝑧 = if ( 𝑧 ∈ ℋ , 𝑧 , 0ℎ ) → ( ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ) ·ih 𝑧 ) = ( ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ) ·ih if ( 𝑧 ∈ ℋ , 𝑧 , 0ℎ ) ) ) |
11 |
9 10
|
eqeq12d |
⊢ ( 𝑧 = if ( 𝑧 ∈ ℋ , 𝑧 , 0ℎ ) → ( ( if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ·ih ( 𝑇 ‘ 𝑧 ) ) = ( ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ) ·ih 𝑧 ) ↔ ( if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ·ih ( 𝑇 ‘ if ( 𝑧 ∈ ℋ , 𝑧 , 0ℎ ) ) ) = ( ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ) ·ih if ( 𝑧 ∈ ℋ , 𝑧 , 0ℎ ) ) ) ) |
12 |
|
ifhvhv0 |
⊢ if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ∈ ℋ |
13 |
|
ifhvhv0 |
⊢ if ( 𝑧 ∈ ℋ , 𝑧 , 0ℎ ) ∈ ℋ |
14 |
12 13 1 2
|
lnophmlem2 |
⊢ ( if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ·ih ( 𝑇 ‘ if ( 𝑧 ∈ ℋ , 𝑧 , 0ℎ ) ) ) = ( ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ) ·ih if ( 𝑧 ∈ ℋ , 𝑧 , 0ℎ ) ) |
15 |
7 11 14
|
dedth2h |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑦 ·ih ( 𝑇 ‘ 𝑧 ) ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑧 ) ) |
16 |
15
|
rgen2 |
⊢ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑦 ·ih ( 𝑇 ‘ 𝑧 ) ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑧 ) |
17 |
|
elhmop |
⊢ ( 𝑇 ∈ HrmOp ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑦 ·ih ( 𝑇 ‘ 𝑧 ) ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑧 ) ) ) |
18 |
3 16 17
|
mpbir2an |
⊢ 𝑇 ∈ HrmOp |