Metamath Proof Explorer


Theorem lnophmi

Description: A linear operator is Hermitian if x .ih ( Tx ) takes only real values. Remark in ReedSimon p. 195. (Contributed by NM, 24-Jan-2006) (New usage is discouraged.)

Ref Expression
Hypotheses lnophm.1 𝑇 ∈ LinOp
lnophm.2 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑥 ) ) ∈ ℝ
Assertion lnophmi 𝑇 ∈ HrmOp

Proof

Step Hyp Ref Expression
1 lnophm.1 𝑇 ∈ LinOp
2 lnophm.2 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑥 ) ) ∈ ℝ
3 1 lnopfi 𝑇 : ℋ ⟶ ℋ
4 oveq1 ( 𝑦 = if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) → ( 𝑦 ·ih ( 𝑇𝑧 ) ) = ( if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) ·ih ( 𝑇𝑧 ) ) )
5 fveq2 ( 𝑦 = if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) → ( 𝑇𝑦 ) = ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) ) )
6 5 oveq1d ( 𝑦 = if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) → ( ( 𝑇𝑦 ) ·ih 𝑧 ) = ( ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) ) ·ih 𝑧 ) )
7 4 6 eqeq12d ( 𝑦 = if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) → ( ( 𝑦 ·ih ( 𝑇𝑧 ) ) = ( ( 𝑇𝑦 ) ·ih 𝑧 ) ↔ ( if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) ·ih ( 𝑇𝑧 ) ) = ( ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) ) ·ih 𝑧 ) ) )
8 fveq2 ( 𝑧 = if ( 𝑧 ∈ ℋ , 𝑧 , 0 ) → ( 𝑇𝑧 ) = ( 𝑇 ‘ if ( 𝑧 ∈ ℋ , 𝑧 , 0 ) ) )
9 8 oveq2d ( 𝑧 = if ( 𝑧 ∈ ℋ , 𝑧 , 0 ) → ( if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) ·ih ( 𝑇𝑧 ) ) = ( if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) ·ih ( 𝑇 ‘ if ( 𝑧 ∈ ℋ , 𝑧 , 0 ) ) ) )
10 oveq2 ( 𝑧 = if ( 𝑧 ∈ ℋ , 𝑧 , 0 ) → ( ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) ) ·ih 𝑧 ) = ( ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) ) ·ih if ( 𝑧 ∈ ℋ , 𝑧 , 0 ) ) )
11 9 10 eqeq12d ( 𝑧 = if ( 𝑧 ∈ ℋ , 𝑧 , 0 ) → ( ( if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) ·ih ( 𝑇𝑧 ) ) = ( ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) ) ·ih 𝑧 ) ↔ ( if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) ·ih ( 𝑇 ‘ if ( 𝑧 ∈ ℋ , 𝑧 , 0 ) ) ) = ( ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) ) ·ih if ( 𝑧 ∈ ℋ , 𝑧 , 0 ) ) ) )
12 ifhvhv0 if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) ∈ ℋ
13 ifhvhv0 if ( 𝑧 ∈ ℋ , 𝑧 , 0 ) ∈ ℋ
14 12 13 1 2 lnophmlem2 ( if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) ·ih ( 𝑇 ‘ if ( 𝑧 ∈ ℋ , 𝑧 , 0 ) ) ) = ( ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) ) ·ih if ( 𝑧 ∈ ℋ , 𝑧 , 0 ) )
15 7 11 14 dedth2h ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑦 ·ih ( 𝑇𝑧 ) ) = ( ( 𝑇𝑦 ) ·ih 𝑧 ) )
16 15 rgen2 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑦 ·ih ( 𝑇𝑧 ) ) = ( ( 𝑇𝑦 ) ·ih 𝑧 )
17 elhmop ( 𝑇 ∈ HrmOp ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑦 ·ih ( 𝑇𝑧 ) ) = ( ( 𝑇𝑦 ) ·ih 𝑧 ) ) )
18 3 16 17 mpbir2an 𝑇 ∈ HrmOp