Metamath Proof Explorer


Theorem lnophmlem1

Description: Lemma for lnophmi . (Contributed by NM, 24-Jan-2006) (New usage is discouraged.)

Ref Expression
Hypotheses lnophmlem.1 𝐴 ∈ ℋ
lnophmlem.2 𝐵 ∈ ℋ
lnophmlem.3 𝑇 ∈ LinOp
lnophmlem.4 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑥 ) ) ∈ ℝ
Assertion lnophmlem1 ( 𝐴 ·ih ( 𝑇𝐴 ) ) ∈ ℝ

Proof

Step Hyp Ref Expression
1 lnophmlem.1 𝐴 ∈ ℋ
2 lnophmlem.2 𝐵 ∈ ℋ
3 lnophmlem.3 𝑇 ∈ LinOp
4 lnophmlem.4 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑥 ) ) ∈ ℝ
5 id ( 𝑥 = 𝐴𝑥 = 𝐴 )
6 fveq2 ( 𝑥 = 𝐴 → ( 𝑇𝑥 ) = ( 𝑇𝐴 ) )
7 5 6 oveq12d ( 𝑥 = 𝐴 → ( 𝑥 ·ih ( 𝑇𝑥 ) ) = ( 𝐴 ·ih ( 𝑇𝐴 ) ) )
8 7 eleq1d ( 𝑥 = 𝐴 → ( ( 𝑥 ·ih ( 𝑇𝑥 ) ) ∈ ℝ ↔ ( 𝐴 ·ih ( 𝑇𝐴 ) ) ∈ ℝ ) )
9 8 rspcv ( 𝐴 ∈ ℋ → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑥 ) ) ∈ ℝ → ( 𝐴 ·ih ( 𝑇𝐴 ) ) ∈ ℝ ) )
10 1 4 9 mp2 ( 𝐴 ·ih ( 𝑇𝐴 ) ) ∈ ℝ