Step |
Hyp |
Ref |
Expression |
1 |
|
lnopco.1 |
⊢ 𝑆 ∈ LinOp |
2 |
|
lnopco.2 |
⊢ 𝑇 ∈ LinOp |
3 |
1
|
lnopfi |
⊢ 𝑆 : ℋ ⟶ ℋ |
4 |
2
|
lnopfi |
⊢ 𝑇 : ℋ ⟶ ℋ |
5 |
3 4
|
hoaddcli |
⊢ ( 𝑆 +op 𝑇 ) : ℋ ⟶ ℋ |
6 |
|
hvmulcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) |
7 |
1
|
lnopaddi |
⊢ ( ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑆 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑆 ‘ 𝑧 ) ) ) |
8 |
2
|
lnopaddi |
⊢ ( ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
9 |
7 8
|
oveq12d |
⊢ ( ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑆 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) +ℎ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) = ( ( ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑆 ‘ 𝑧 ) ) +ℎ ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
10 |
6 9
|
sylan |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑆 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) +ℎ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) = ( ( ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑆 ‘ 𝑧 ) ) +ℎ ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
11 |
3
|
ffvelrni |
⊢ ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ → ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) ∈ ℋ ) |
12 |
6 11
|
syl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) ∈ ℋ ) |
13 |
3
|
ffvelrni |
⊢ ( 𝑧 ∈ ℋ → ( 𝑆 ‘ 𝑧 ) ∈ ℋ ) |
14 |
12 13
|
anim12i |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) ∈ ℋ ∧ ( 𝑆 ‘ 𝑧 ) ∈ ℋ ) ) |
15 |
4
|
ffvelrni |
⊢ ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ → ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) ∈ ℋ ) |
16 |
6 15
|
syl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) ∈ ℋ ) |
17 |
4
|
ffvelrni |
⊢ ( 𝑧 ∈ ℋ → ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) |
18 |
16 17
|
anim12i |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) ) |
19 |
|
hvadd4 |
⊢ ( ( ( ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) ∈ ℋ ∧ ( 𝑆 ‘ 𝑧 ) ∈ ℋ ) ∧ ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) ) → ( ( ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑆 ‘ 𝑧 ) ) +ℎ ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) = ( ( ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) ) +ℎ ( ( 𝑆 ‘ 𝑧 ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
20 |
14 18 19
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑆 ‘ 𝑧 ) ) +ℎ ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) = ( ( ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) ) +ℎ ( ( 𝑆 ‘ 𝑧 ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
21 |
10 20
|
eqtrd |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑆 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) +ℎ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) = ( ( ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) ) +ℎ ( ( 𝑆 ‘ 𝑧 ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
22 |
|
hvaddcl |
⊢ ( ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) |
23 |
6 22
|
sylan |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) |
24 |
|
hosval |
⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) → ( ( 𝑆 +op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑆 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) +ℎ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) ) |
25 |
3 4 24
|
mp3an12 |
⊢ ( ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ → ( ( 𝑆 +op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑆 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) +ℎ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) ) |
26 |
23 25
|
syl |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑆 +op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑆 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) +ℎ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) ) |
27 |
3
|
ffvelrni |
⊢ ( 𝑦 ∈ ℋ → ( 𝑆 ‘ 𝑦 ) ∈ ℋ ) |
28 |
4
|
ffvelrni |
⊢ ( 𝑦 ∈ ℋ → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
29 |
27 28
|
jca |
⊢ ( 𝑦 ∈ ℋ → ( ( 𝑆 ‘ 𝑦 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) ) |
30 |
|
ax-hvdistr1 |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑆 ‘ 𝑦 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( 𝑥 ·ℎ ( ( 𝑆 ‘ 𝑦 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ) = ( ( 𝑥 ·ℎ ( 𝑆 ‘ 𝑦 ) ) +ℎ ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) ) |
31 |
30
|
3expb |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( ( 𝑆 ‘ 𝑦 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) ) → ( 𝑥 ·ℎ ( ( 𝑆 ‘ 𝑦 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ) = ( ( 𝑥 ·ℎ ( 𝑆 ‘ 𝑦 ) ) +ℎ ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) ) |
32 |
29 31
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ ( ( 𝑆 ‘ 𝑦 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ) = ( ( 𝑥 ·ℎ ( 𝑆 ‘ 𝑦 ) ) +ℎ ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) ) |
33 |
|
hosval |
⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑆 +op 𝑇 ) ‘ 𝑦 ) = ( ( 𝑆 ‘ 𝑦 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
34 |
3 4 33
|
mp3an12 |
⊢ ( 𝑦 ∈ ℋ → ( ( 𝑆 +op 𝑇 ) ‘ 𝑦 ) = ( ( 𝑆 ‘ 𝑦 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
35 |
34
|
oveq2d |
⊢ ( 𝑦 ∈ ℋ → ( 𝑥 ·ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑦 ) ) = ( 𝑥 ·ℎ ( ( 𝑆 ‘ 𝑦 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ) ) |
36 |
35
|
adantl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑦 ) ) = ( 𝑥 ·ℎ ( ( 𝑆 ‘ 𝑦 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ) ) |
37 |
1
|
lnopmuli |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) = ( 𝑥 ·ℎ ( 𝑆 ‘ 𝑦 ) ) ) |
38 |
2
|
lnopmuli |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) = ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
39 |
37 38
|
oveq12d |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) ) = ( ( 𝑥 ·ℎ ( 𝑆 ‘ 𝑦 ) ) +ℎ ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) ) |
40 |
32 36 39
|
3eqtr4d |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑦 ) ) = ( ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) ) ) |
41 |
|
hosval |
⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑆 +op 𝑇 ) ‘ 𝑧 ) = ( ( 𝑆 ‘ 𝑧 ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
42 |
3 4 41
|
mp3an12 |
⊢ ( 𝑧 ∈ ℋ → ( ( 𝑆 +op 𝑇 ) ‘ 𝑧 ) = ( ( 𝑆 ‘ 𝑧 ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
43 |
40 42
|
oveqan12d |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑧 ) ) = ( ( ( 𝑆 ‘ ( 𝑥 ·ℎ 𝑦 ) ) +ℎ ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) ) +ℎ ( ( 𝑆 ‘ 𝑧 ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
44 |
21 26 43
|
3eqtr4d |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑆 +op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑧 ) ) ) |
45 |
44
|
ralrimiva |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ∀ 𝑧 ∈ ℋ ( ( 𝑆 +op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑧 ) ) ) |
46 |
45
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑆 +op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑧 ) ) |
47 |
|
ellnop |
⊢ ( ( 𝑆 +op 𝑇 ) ∈ LinOp ↔ ( ( 𝑆 +op 𝑇 ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑆 +op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝑆 +op 𝑇 ) ‘ 𝑧 ) ) ) ) |
48 |
5 46 47
|
mpbir2an |
⊢ ( 𝑆 +op 𝑇 ) ∈ LinOp |