Step |
Hyp |
Ref |
Expression |
1 |
|
ellnop |
⊢ ( 𝑇 ∈ LinOp ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
2 |
1
|
simprbi |
⊢ ( 𝑇 ∈ LinOp → ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
3 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ·ℎ 𝑦 ) = ( 𝐴 ·ℎ 𝑦 ) ) |
4 |
3
|
fvoveq1d |
⊢ ( 𝑥 = 𝐴 → ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) |
5 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
6 |
5
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
7 |
4 6
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ↔ ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
8 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 ·ℎ 𝑦 ) = ( 𝐴 ·ℎ 𝐵 ) ) |
9 |
8
|
fvoveq1d |
⊢ ( 𝑦 = 𝐵 → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝑧 ) ) ) |
10 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝑇 ‘ 𝑦 ) = ( 𝑇 ‘ 𝐵 ) ) |
11 |
10
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑦 ) ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) |
12 |
11
|
oveq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
13 |
9 12
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ↔ ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝑧 ) ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
14 |
|
oveq2 |
⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝑧 ) = ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ) |
15 |
14
|
fveq2d |
⊢ ( 𝑧 = 𝐶 → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝑧 ) ) = ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ) ) |
16 |
|
fveq2 |
⊢ ( 𝑧 = 𝐶 → ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ 𝐶 ) ) |
17 |
16
|
oveq2d |
⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ ( 𝑇 ‘ 𝐶 ) ) ) |
18 |
15 17
|
eqeq12d |
⊢ ( 𝑧 = 𝐶 → ( ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝑧 ) ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ↔ ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ ( 𝑇 ‘ 𝐶 ) ) ) ) |
19 |
7 13 18
|
rspc3v |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ ( 𝑇 ‘ 𝐶 ) ) ) ) |
20 |
2 19
|
syl5 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝑇 ∈ LinOp → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ ( 𝑇 ‘ 𝐶 ) ) ) ) |
21 |
20
|
3expb |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ) → ( 𝑇 ∈ LinOp → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ ( 𝑇 ‘ 𝐶 ) ) ) ) |
22 |
21
|
impcom |
⊢ ( ( 𝑇 ∈ LinOp ∧ ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ) ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ ( 𝑇 ‘ 𝐶 ) ) ) |
23 |
22
|
anassrs |
⊢ ( ( ( 𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ) ∧ ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ ( 𝑇 ‘ 𝐶 ) ) ) |