Description: Basic scalar product property of a linear Hilbert space operator. (Contributed by NM, 23-Jan-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lnopl.1 | ⊢ 𝑇 ∈ LinOp | |
Assertion | lnopli | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ ( 𝑇 ‘ 𝐶 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnopl.1 | ⊢ 𝑇 ∈ LinOp | |
2 | lnopl | ⊢ ( ( ( 𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ) ∧ ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ ( 𝑇 ‘ 𝐶 ) ) ) | |
3 | 1 2 | mpanl1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ ( 𝑇 ‘ 𝐶 ) ) ) |
4 | 3 | 3impb | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ ( 𝑇 ‘ 𝐶 ) ) ) |