Metamath Proof Explorer


Theorem lnopli

Description: Basic scalar product property of a linear Hilbert space operator. (Contributed by NM, 23-Jan-2006) (New usage is discouraged.)

Ref Expression
Hypothesis lnopl.1 𝑇 ∈ LinOp
Assertion lnopli ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝐴 · 𝐵 ) + 𝐶 ) ) = ( ( 𝐴 · ( 𝑇𝐵 ) ) + ( 𝑇𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 lnopl.1 𝑇 ∈ LinOp
2 lnopl ( ( ( 𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ) ∧ ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ) → ( 𝑇 ‘ ( ( 𝐴 · 𝐵 ) + 𝐶 ) ) = ( ( 𝐴 · ( 𝑇𝐵 ) ) + ( 𝑇𝐶 ) ) )
3 1 2 mpanl1 ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ) → ( 𝑇 ‘ ( ( 𝐴 · 𝐵 ) + 𝐶 ) ) = ( ( 𝐴 · ( 𝑇𝐵 ) ) + ( 𝑇𝐶 ) ) )
4 3 3impb ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝐴 · 𝐵 ) + 𝐶 ) ) = ( ( 𝐴 · ( 𝑇𝐵 ) ) + ( 𝑇𝐶 ) ) )