| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lnopm.1 |
⊢ 𝑇 ∈ LinOp |
| 2 |
1
|
lnopfi |
⊢ 𝑇 : ℋ ⟶ ℋ |
| 3 |
|
homulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ) |
| 4 |
2 3
|
mpan2 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ) |
| 5 |
|
hvmulcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) |
| 6 |
|
hvaddcl |
⊢ ( ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) |
| 7 |
5 6
|
sylan |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) |
| 8 |
|
homval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( 𝐴 ·ℎ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) ) |
| 9 |
2 8
|
mp3an2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( 𝐴 ·ℎ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) ) |
| 10 |
7 9
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( ( 𝐴 ·op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( 𝐴 ·ℎ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) ) |
| 11 |
|
id |
⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) |
| 12 |
2
|
ffvelcdmi |
⊢ ( 𝑦 ∈ ℋ → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
| 13 |
|
hvmulcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ℋ ) |
| 14 |
12 13
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ℋ ) |
| 15 |
2
|
ffvelcdmi |
⊢ ( 𝑧 ∈ ℋ → ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) |
| 16 |
|
ax-hvdistr1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) → ( 𝐴 ·ℎ ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) = ( ( 𝐴 ·ℎ ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) +ℎ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 17 |
11 14 15 16
|
syl3an |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( 𝐴 ·ℎ ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) = ( ( 𝐴 ·ℎ ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) +ℎ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 18 |
17
|
3expb |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( 𝐴 ·ℎ ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) = ( ( 𝐴 ·ℎ ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) +ℎ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 19 |
1
|
lnopli |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
| 20 |
19
|
3expa |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
| 21 |
20
|
oveq2d |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) = ( 𝐴 ·ℎ ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( 𝐴 ·ℎ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) = ( 𝐴 ·ℎ ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 23 |
|
homval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
| 24 |
2 23
|
mp3an2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
| 25 |
24
|
adantrl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
| 26 |
25
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) ) = ( 𝑥 ·ℎ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 27 |
|
hvmulcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) = ( 𝑥 ·ℎ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 28 |
12 27
|
syl3an3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) = ( 𝑥 ·ℎ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 29 |
28
|
3expb |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( 𝐴 ·ℎ ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) = ( 𝑥 ·ℎ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 30 |
26 29
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) ) = ( 𝐴 ·ℎ ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 31 |
|
homval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑧 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
| 32 |
2 31
|
mp3an2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑧 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
| 33 |
30 32
|
oveqan12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ ( 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℋ ) ) → ( ( 𝑥 ·ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑧 ) ) = ( ( 𝐴 ·ℎ ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) +ℎ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 34 |
33
|
anandis |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( ( 𝑥 ·ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑧 ) ) = ( ( 𝐴 ·ℎ ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) +ℎ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 35 |
18 22 34
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( ( 𝑥 ·ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑧 ) ) = ( 𝐴 ·ℎ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) ) |
| 36 |
10 35
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( ( 𝐴 ·op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑧 ) ) ) |
| 37 |
36
|
exp32 |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑧 ∈ ℋ → ( ( 𝐴 ·op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑧 ) ) ) ) ) |
| 38 |
37
|
ralrimdv |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ∀ 𝑧 ∈ ℋ ( ( 𝐴 ·op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑧 ) ) ) ) |
| 39 |
38
|
ralrimivv |
⊢ ( 𝐴 ∈ ℂ → ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝐴 ·op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑧 ) ) ) |
| 40 |
|
ellnop |
⊢ ( ( 𝐴 ·op 𝑇 ) ∈ LinOp ↔ ( ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝐴 ·op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑧 ) ) ) ) |
| 41 |
4 39 40
|
sylanbrc |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ·op 𝑇 ) ∈ LinOp ) |