Step |
Hyp |
Ref |
Expression |
1 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
2 |
|
lnopl |
⊢ ( ( ( 𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ) ∧ ( 𝐵 ∈ ℋ ∧ 0ℎ ∈ ℋ ) ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ ( 𝑇 ‘ 0ℎ ) ) ) |
3 |
1 2
|
mpanr2 |
⊢ ( ( ( 𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ) ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ ( 𝑇 ‘ 0ℎ ) ) ) |
4 |
3
|
3impa |
⊢ ( ( 𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ ( 𝑇 ‘ 0ℎ ) ) ) |
5 |
|
hvmulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ ) |
6 |
|
ax-hvaddid |
⊢ ( ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ → ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) = ( 𝐴 ·ℎ 𝐵 ) ) |
7 |
5 6
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) = ( 𝐴 ·ℎ 𝐵 ) ) |
8 |
7
|
3adant1 |
⊢ ( ( 𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) = ( 𝐴 ·ℎ 𝐵 ) ) |
9 |
8
|
fveq2d |
⊢ ( ( 𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) ) = ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐵 ) ) ) |
10 |
|
lnop0 |
⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ‘ 0ℎ ) = 0ℎ ) |
11 |
10
|
oveq2d |
⊢ ( 𝑇 ∈ LinOp → ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ ( 𝑇 ‘ 0ℎ ) ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ 0ℎ ) ) |
12 |
11
|
3ad2ant1 |
⊢ ( ( 𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ ( 𝑇 ‘ 0ℎ ) ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ 0ℎ ) ) |
13 |
|
lnopf |
⊢ ( 𝑇 ∈ LinOp → 𝑇 : ℋ ⟶ ℋ ) |
14 |
13
|
ffvelrnda |
⊢ ( ( 𝑇 ∈ LinOp ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ 𝐵 ) ∈ ℋ ) |
15 |
|
hvmulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 ‘ 𝐵 ) ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) ∈ ℋ ) |
16 |
14 15
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 ∈ LinOp ∧ 𝐵 ∈ ℋ ) ) → ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) ∈ ℋ ) |
17 |
16
|
3impb |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) ∈ ℋ ) |
18 |
17
|
3com12 |
⊢ ( ( 𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) ∈ ℋ ) |
19 |
|
ax-hvaddid |
⊢ ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) ∈ ℋ → ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ 0ℎ ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) |
20 |
18 19
|
syl |
⊢ ( ( 𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ 0ℎ ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) |
21 |
12 20
|
eqtrd |
⊢ ( ( 𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) +ℎ ( 𝑇 ‘ 0ℎ ) ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) |
22 |
4 9 21
|
3eqtr3d |
⊢ ( ( 𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) |