Metamath Proof Explorer


Theorem lnopmuli

Description: Multiplicative property of a linear Hilbert space operator. (Contributed by NM, 11-May-2005) (New usage is discouraged.)

Ref Expression
Hypothesis lnopl.1 𝑇 ∈ LinOp
Assertion lnopmuli ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 · 𝐵 ) ) = ( 𝐴 · ( 𝑇𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 lnopl.1 𝑇 ∈ LinOp
2 lnopmul ( ( 𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 · 𝐵 ) ) = ( 𝐴 · ( 𝑇𝐵 ) ) )
3 1 2 mp3an1 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 · 𝐵 ) ) = ( 𝐴 · ( 𝑇𝐵 ) ) )