Metamath Proof Explorer


Theorem lnopunii

Description: If a linear operator (whose range is ~H ) is idempotent in the norm, the operator is unitary. Similar to theorem in AkhiezerGlazman p. 73. (Contributed by NM, 23-Jan-2006) (New usage is discouraged.)

Ref Expression
Hypotheses lnopuni.1 𝑇 ∈ LinOp
lnopuni.2 𝑇 : ℋ –onto→ ℋ
lnopuni.3 𝑥 ∈ ℋ ( norm ‘ ( 𝑇𝑥 ) ) = ( norm𝑥 )
Assertion lnopunii 𝑇 ∈ UniOp

Proof

Step Hyp Ref Expression
1 lnopuni.1 𝑇 ∈ LinOp
2 lnopuni.2 𝑇 : ℋ –onto→ ℋ
3 lnopuni.3 𝑥 ∈ ℋ ( norm ‘ ( 𝑇𝑥 ) ) = ( norm𝑥 )
4 fveq2 ( 𝑥 = if ( 𝑥 ∈ ℋ , 𝑥 , 0 ) → ( 𝑇𝑥 ) = ( 𝑇 ‘ if ( 𝑥 ∈ ℋ , 𝑥 , 0 ) ) )
5 4 oveq1d ( 𝑥 = if ( 𝑥 ∈ ℋ , 𝑥 , 0 ) → ( ( 𝑇𝑥 ) ·ih ( 𝑇𝑦 ) ) = ( ( 𝑇 ‘ if ( 𝑥 ∈ ℋ , 𝑥 , 0 ) ) ·ih ( 𝑇𝑦 ) ) )
6 oveq1 ( 𝑥 = if ( 𝑥 ∈ ℋ , 𝑥 , 0 ) → ( 𝑥 ·ih 𝑦 ) = ( if ( 𝑥 ∈ ℋ , 𝑥 , 0 ) ·ih 𝑦 ) )
7 5 6 eqeq12d ( 𝑥 = if ( 𝑥 ∈ ℋ , 𝑥 , 0 ) → ( ( ( 𝑇𝑥 ) ·ih ( 𝑇𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ↔ ( ( 𝑇 ‘ if ( 𝑥 ∈ ℋ , 𝑥 , 0 ) ) ·ih ( 𝑇𝑦 ) ) = ( if ( 𝑥 ∈ ℋ , 𝑥 , 0 ) ·ih 𝑦 ) ) )
8 fveq2 ( 𝑦 = if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) → ( 𝑇𝑦 ) = ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) ) )
9 8 oveq2d ( 𝑦 = if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) → ( ( 𝑇 ‘ if ( 𝑥 ∈ ℋ , 𝑥 , 0 ) ) ·ih ( 𝑇𝑦 ) ) = ( ( 𝑇 ‘ if ( 𝑥 ∈ ℋ , 𝑥 , 0 ) ) ·ih ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) ) ) )
10 oveq2 ( 𝑦 = if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) → ( if ( 𝑥 ∈ ℋ , 𝑥 , 0 ) ·ih 𝑦 ) = ( if ( 𝑥 ∈ ℋ , 𝑥 , 0 ) ·ih if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) ) )
11 9 10 eqeq12d ( 𝑦 = if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) → ( ( ( 𝑇 ‘ if ( 𝑥 ∈ ℋ , 𝑥 , 0 ) ) ·ih ( 𝑇𝑦 ) ) = ( if ( 𝑥 ∈ ℋ , 𝑥 , 0 ) ·ih 𝑦 ) ↔ ( ( 𝑇 ‘ if ( 𝑥 ∈ ℋ , 𝑥 , 0 ) ) ·ih ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) ) ) = ( if ( 𝑥 ∈ ℋ , 𝑥 , 0 ) ·ih if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) ) ) )
12 ifhvhv0 if ( 𝑥 ∈ ℋ , 𝑥 , 0 ) ∈ ℋ
13 ifhvhv0 if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) ∈ ℋ
14 1 3 12 13 lnopunilem2 ( ( 𝑇 ‘ if ( 𝑥 ∈ ℋ , 𝑥 , 0 ) ) ·ih ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) ) ) = ( if ( 𝑥 ∈ ℋ , 𝑥 , 0 ) ·ih if ( 𝑦 ∈ ℋ , 𝑦 , 0 ) )
15 7 11 14 dedth2h ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇𝑥 ) ·ih ( 𝑇𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) )
16 15 rgen2 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇𝑥 ) ·ih ( 𝑇𝑦 ) ) = ( 𝑥 ·ih 𝑦 )
17 elunop ( 𝑇 ∈ UniOp ↔ ( 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇𝑥 ) ·ih ( 𝑇𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) )
18 2 16 17 mpbir2an 𝑇 ∈ UniOp