Step |
Hyp |
Ref |
Expression |
1 |
|
lnopuni.1 |
⊢ 𝑇 ∈ LinOp |
2 |
|
lnopuni.2 |
⊢ 𝑇 : ℋ –onto→ ℋ |
3 |
|
lnopuni.3 |
⊢ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) |
4 |
|
fveq2 |
⊢ ( 𝑥 = if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) → ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) ) ) |
5 |
4
|
oveq1d |
⊢ ( 𝑥 = if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
6 |
|
oveq1 |
⊢ ( 𝑥 = if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) → ( 𝑥 ·ih 𝑦 ) = ( if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) ·ih 𝑦 ) ) |
7 |
5 6
|
eqeq12d |
⊢ ( 𝑥 = if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) → ( ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ↔ ( ( 𝑇 ‘ if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) ·ih 𝑦 ) ) ) |
8 |
|
fveq2 |
⊢ ( 𝑦 = if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) → ( 𝑇 ‘ 𝑦 ) = ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ) ) |
9 |
8
|
oveq2d |
⊢ ( 𝑦 = if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) → ( ( 𝑇 ‘ if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) ) ·ih ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ) ) ) |
10 |
|
oveq2 |
⊢ ( 𝑦 = if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) → ( if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) ·ih 𝑦 ) = ( if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) ·ih if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ) ) |
11 |
9 10
|
eqeq12d |
⊢ ( 𝑦 = if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) → ( ( ( 𝑇 ‘ if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) ·ih 𝑦 ) ↔ ( ( 𝑇 ‘ if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) ) ·ih ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ) ) = ( if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) ·ih if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ) ) ) |
12 |
|
ifhvhv0 |
⊢ if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) ∈ ℋ |
13 |
|
ifhvhv0 |
⊢ if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ∈ ℋ |
14 |
1 3 12 13
|
lnopunilem2 |
⊢ ( ( 𝑇 ‘ if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) ) ·ih ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ) ) = ( if ( 𝑥 ∈ ℋ , 𝑥 , 0ℎ ) ·ih if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ) |
15 |
7 11 14
|
dedth2h |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
16 |
15
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) |
17 |
|
elunop |
⊢ ( 𝑇 ∈ UniOp ↔ ( 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) ) |
18 |
2 16 17
|
mpbir2an |
⊢ 𝑇 ∈ UniOp |