| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lnopuni.1 | 
							⊢ 𝑇  ∈  LinOp  | 
						
						
							| 2 | 
							
								
							 | 
							lnopuni.2 | 
							⊢ 𝑇 :  ℋ –onto→  ℋ  | 
						
						
							| 3 | 
							
								
							 | 
							lnopuni.3 | 
							⊢ ∀ 𝑥  ∈   ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) )  =  ( normℎ ‘ 𝑥 )  | 
						
						
							| 4 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  if ( 𝑥  ∈   ℋ ,  𝑥 ,  0ℎ )  →  ( 𝑇 ‘ 𝑥 )  =  ( 𝑇 ‘ if ( 𝑥  ∈   ℋ ,  𝑥 ,  0ℎ ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							oveq1d | 
							⊢ ( 𝑥  =  if ( 𝑥  ∈   ℋ ,  𝑥 ,  0ℎ )  →  ( ( 𝑇 ‘ 𝑥 )  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑇 ‘ if ( 𝑥  ∈   ℋ ,  𝑥 ,  0ℎ ) )  ·ih  ( 𝑇 ‘ 𝑦 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑥  =  if ( 𝑥  ∈   ℋ ,  𝑥 ,  0ℎ )  →  ( 𝑥  ·ih  𝑦 )  =  ( if ( 𝑥  ∈   ℋ ,  𝑥 ,  0ℎ )  ·ih  𝑦 ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							eqeq12d | 
							⊢ ( 𝑥  =  if ( 𝑥  ∈   ℋ ,  𝑥 ,  0ℎ )  →  ( ( ( 𝑇 ‘ 𝑥 )  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( 𝑥  ·ih  𝑦 )  ↔  ( ( 𝑇 ‘ if ( 𝑥  ∈   ℋ ,  𝑥 ,  0ℎ ) )  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( if ( 𝑥  ∈   ℋ ,  𝑥 ,  0ℎ )  ·ih  𝑦 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑦  =  if ( 𝑦  ∈   ℋ ,  𝑦 ,  0ℎ )  →  ( 𝑇 ‘ 𝑦 )  =  ( 𝑇 ‘ if ( 𝑦  ∈   ℋ ,  𝑦 ,  0ℎ ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							oveq2d | 
							⊢ ( 𝑦  =  if ( 𝑦  ∈   ℋ ,  𝑦 ,  0ℎ )  →  ( ( 𝑇 ‘ if ( 𝑥  ∈   ℋ ,  𝑥 ,  0ℎ ) )  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( ( 𝑇 ‘ if ( 𝑥  ∈   ℋ ,  𝑥 ,  0ℎ ) )  ·ih  ( 𝑇 ‘ if ( 𝑦  ∈   ℋ ,  𝑦 ,  0ℎ ) ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑦  =  if ( 𝑦  ∈   ℋ ,  𝑦 ,  0ℎ )  →  ( if ( 𝑥  ∈   ℋ ,  𝑥 ,  0ℎ )  ·ih  𝑦 )  =  ( if ( 𝑥  ∈   ℋ ,  𝑥 ,  0ℎ )  ·ih  if ( 𝑦  ∈   ℋ ,  𝑦 ,  0ℎ ) ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							eqeq12d | 
							⊢ ( 𝑦  =  if ( 𝑦  ∈   ℋ ,  𝑦 ,  0ℎ )  →  ( ( ( 𝑇 ‘ if ( 𝑥  ∈   ℋ ,  𝑥 ,  0ℎ ) )  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( if ( 𝑥  ∈   ℋ ,  𝑥 ,  0ℎ )  ·ih  𝑦 )  ↔  ( ( 𝑇 ‘ if ( 𝑥  ∈   ℋ ,  𝑥 ,  0ℎ ) )  ·ih  ( 𝑇 ‘ if ( 𝑦  ∈   ℋ ,  𝑦 ,  0ℎ ) ) )  =  ( if ( 𝑥  ∈   ℋ ,  𝑥 ,  0ℎ )  ·ih  if ( 𝑦  ∈   ℋ ,  𝑦 ,  0ℎ ) ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							ifhvhv0 | 
							⊢ if ( 𝑥  ∈   ℋ ,  𝑥 ,  0ℎ )  ∈   ℋ  | 
						
						
							| 13 | 
							
								
							 | 
							ifhvhv0 | 
							⊢ if ( 𝑦  ∈   ℋ ,  𝑦 ,  0ℎ )  ∈   ℋ  | 
						
						
							| 14 | 
							
								1 3 12 13
							 | 
							lnopunilem2 | 
							⊢ ( ( 𝑇 ‘ if ( 𝑥  ∈   ℋ ,  𝑥 ,  0ℎ ) )  ·ih  ( 𝑇 ‘ if ( 𝑦  ∈   ℋ ,  𝑦 ,  0ℎ ) ) )  =  ( if ( 𝑥  ∈   ℋ ,  𝑥 ,  0ℎ )  ·ih  if ( 𝑦  ∈   ℋ ,  𝑦 ,  0ℎ ) )  | 
						
						
							| 15 | 
							
								7 11 14
							 | 
							dedth2h | 
							⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝑥 )  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( 𝑥  ·ih  𝑦 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							rgen2 | 
							⊢ ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( 𝑥  ·ih  𝑦 )  | 
						
						
							| 17 | 
							
								
							 | 
							elunop | 
							⊢ ( 𝑇  ∈  UniOp  ↔  ( 𝑇 :  ℋ –onto→  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑇 ‘ 𝑥 )  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  ( 𝑥  ·ih  𝑦 ) ) )  | 
						
						
							| 18 | 
							
								2 16 17
							 | 
							mpbir2an | 
							⊢ 𝑇  ∈  UniOp  |