Step |
Hyp |
Ref |
Expression |
1 |
|
lnopunilem.1 |
⊢ 𝑇 ∈ LinOp |
2 |
|
lnopunilem.2 |
⊢ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) |
3 |
|
lnopunilem.3 |
⊢ 𝐴 ∈ ℋ |
4 |
|
lnopunilem.4 |
⊢ 𝐵 ∈ ℋ |
5 |
|
lnopunilem1.5 |
⊢ 𝐶 ∈ ℂ |
6 |
1
|
lnopfi |
⊢ 𝑇 : ℋ ⟶ ℋ |
7 |
6
|
ffvelrni |
⊢ ( 𝐴 ∈ ℋ → ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) |
8 |
3 7
|
ax-mp |
⊢ ( 𝑇 ‘ 𝐴 ) ∈ ℋ |
9 |
6
|
ffvelrni |
⊢ ( 𝐵 ∈ ℋ → ( 𝑇 ‘ 𝐵 ) ∈ ℋ ) |
10 |
4 9
|
ax-mp |
⊢ ( 𝑇 ‘ 𝐵 ) ∈ ℋ |
11 |
8 10
|
hicli |
⊢ ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ∈ ℂ |
12 |
5 11
|
mulcli |
⊢ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ∈ ℂ |
13 |
|
reval |
⊢ ( ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ∈ ℂ → ( ℜ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) = ( ( ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ) / 2 ) ) |
14 |
12 13
|
ax-mp |
⊢ ( ℜ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) = ( ( ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ) / 2 ) |
15 |
3 4
|
hicli |
⊢ ( 𝐴 ·ih 𝐵 ) ∈ ℂ |
16 |
5 15
|
mulcli |
⊢ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ∈ ℂ |
17 |
|
reval |
⊢ ( ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ∈ ℂ → ( ℜ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) = ( ( ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) + ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) ) / 2 ) ) |
18 |
16 17
|
ax-mp |
⊢ ( ℜ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) = ( ( ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) + ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) ) / 2 ) |
19 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑦 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) |
20 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( normℎ ‘ 𝑥 ) = ( normℎ ‘ 𝑦 ) ) |
21 |
19 20
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ) ) |
22 |
21
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ) |
23 |
2 22
|
mpbi |
⊢ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) |
24 |
|
oveq1 |
⊢ ( ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ↑ 2 ) = ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) |
25 |
6
|
ffvelrni |
⊢ ( 𝑦 ∈ ℋ → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
26 |
|
normsq |
⊢ ( ( 𝑇 ‘ 𝑦 ) ∈ ℋ → ( ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ↑ 2 ) = ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
27 |
25 26
|
syl |
⊢ ( 𝑦 ∈ ℋ → ( ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ↑ 2 ) = ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
28 |
|
normsq |
⊢ ( 𝑦 ∈ ℋ → ( ( normℎ ‘ 𝑦 ) ↑ 2 ) = ( 𝑦 ·ih 𝑦 ) ) |
29 |
27 28
|
eqeq12d |
⊢ ( 𝑦 ∈ ℋ → ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ↑ 2 ) = ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ↔ ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑦 ·ih 𝑦 ) ) ) |
30 |
24 29
|
syl5ib |
⊢ ( 𝑦 ∈ ℋ → ( ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) → ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑦 ·ih 𝑦 ) ) ) |
31 |
30
|
ralimia |
⊢ ( ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) → ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑦 ·ih 𝑦 ) ) |
32 |
23 31
|
ax-mp |
⊢ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑦 ·ih 𝑦 ) |
33 |
|
fveq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑇 ‘ 𝑦 ) = ( 𝑇 ‘ 𝐴 ) ) |
34 |
33 33
|
oveq12d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) |
35 |
|
id |
⊢ ( 𝑦 = 𝐴 → 𝑦 = 𝐴 ) |
36 |
35 35
|
oveq12d |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ·ih 𝑦 ) = ( 𝐴 ·ih 𝐴 ) ) |
37 |
34 36
|
eqeq12d |
⊢ ( 𝑦 = 𝐴 → ( ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑦 ·ih 𝑦 ) ↔ ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) = ( 𝐴 ·ih 𝐴 ) ) ) |
38 |
37
|
rspcv |
⊢ ( 𝐴 ∈ ℋ → ( ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑦 ·ih 𝑦 ) → ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) = ( 𝐴 ·ih 𝐴 ) ) ) |
39 |
3 32 38
|
mp2 |
⊢ ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) = ( 𝐴 ·ih 𝐴 ) |
40 |
39
|
oveq2i |
⊢ ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) = ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) |
41 |
40
|
oveq2i |
⊢ ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) = ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) |
42 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝑇 ‘ 𝑦 ) = ( 𝑇 ‘ 𝐵 ) ) |
43 |
42 42
|
oveq12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) |
44 |
|
id |
⊢ ( 𝑦 = 𝐵 → 𝑦 = 𝐵 ) |
45 |
44 44
|
oveq12d |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ·ih 𝑦 ) = ( 𝐵 ·ih 𝐵 ) ) |
46 |
43 45
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑦 ·ih 𝑦 ) ↔ ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) = ( 𝐵 ·ih 𝐵 ) ) ) |
47 |
46
|
rspcv |
⊢ ( 𝐵 ∈ ℋ → ( ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑦 ·ih 𝑦 ) → ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) = ( 𝐵 ·ih 𝐵 ) ) ) |
48 |
4 32 47
|
mp2 |
⊢ ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) = ( 𝐵 ·ih 𝐵 ) |
49 |
41 48
|
oveq12i |
⊢ ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) = ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) |
50 |
49
|
oveq1i |
⊢ ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ) ) = ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ) ) |
51 |
5
|
cjcli |
⊢ ( ∗ ‘ 𝐶 ) ∈ ℂ |
52 |
8 8
|
hicli |
⊢ ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℂ |
53 |
51 52
|
mulcli |
⊢ ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∈ ℂ |
54 |
5 53
|
mulcli |
⊢ ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) ∈ ℂ |
55 |
10 10
|
hicli |
⊢ ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ∈ ℂ |
56 |
12
|
cjcli |
⊢ ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ∈ ℂ |
57 |
54 55 12 56
|
add42i |
⊢ ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ) ) = ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) + ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) + ( ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) |
58 |
3 3
|
hicli |
⊢ ( 𝐴 ·ih 𝐴 ) ∈ ℂ |
59 |
51 58
|
mulcli |
⊢ ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ∈ ℂ |
60 |
5 59
|
mulcli |
⊢ ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) ∈ ℂ |
61 |
4 4
|
hicli |
⊢ ( 𝐵 ·ih 𝐵 ) ∈ ℂ |
62 |
16
|
cjcli |
⊢ ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℂ |
63 |
60 61 16 62
|
add42i |
⊢ ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) + ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) ) ) = ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) + ( ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) ) |
64 |
5 3
|
hvmulcli |
⊢ ( 𝐶 ·ℎ 𝐴 ) ∈ ℋ |
65 |
64 4
|
hvaddcli |
⊢ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ∈ ℋ |
66 |
|
fveq2 |
⊢ ( 𝑦 = ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) → ( 𝑇 ‘ 𝑦 ) = ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) |
67 |
66 66
|
oveq12d |
⊢ ( 𝑦 = ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) → ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) ) |
68 |
|
id |
⊢ ( 𝑦 = ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) → 𝑦 = ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) |
69 |
68 68
|
oveq12d |
⊢ ( 𝑦 = ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) → ( 𝑦 ·ih 𝑦 ) = ( ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) |
70 |
67 69
|
eqeq12d |
⊢ ( 𝑦 = ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) → ( ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑦 ·ih 𝑦 ) ↔ ( ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) = ( ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) ) |
71 |
70
|
rspcv |
⊢ ( ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ∈ ℋ → ( ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑦 ·ih 𝑦 ) → ( ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) = ( ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) ) |
72 |
65 32 71
|
mp2 |
⊢ ( ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) = ( ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) |
73 |
|
ax-his2 |
⊢ ( ( ( 𝐶 ·ℎ 𝐴 ) ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ∈ ℋ ) → ( ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( ( ( 𝐶 ·ℎ 𝐴 ) ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) + ( 𝐵 ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) ) |
74 |
64 4 65 73
|
mp3an |
⊢ ( ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( ( ( 𝐶 ·ℎ 𝐴 ) ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) + ( 𝐵 ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) |
75 |
|
ax-his3 |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ∈ ℋ ) → ( ( 𝐶 ·ℎ 𝐴 ) ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( 𝐶 · ( 𝐴 ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) ) |
76 |
5 3 65 75
|
mp3an |
⊢ ( ( 𝐶 ·ℎ 𝐴 ) ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( 𝐶 · ( 𝐴 ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) |
77 |
|
his7 |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝐶 ·ℎ 𝐴 ) ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( ( 𝐴 ·ih ( 𝐶 ·ℎ 𝐴 ) ) + ( 𝐴 ·ih 𝐵 ) ) ) |
78 |
3 64 4 77
|
mp3an |
⊢ ( 𝐴 ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( ( 𝐴 ·ih ( 𝐶 ·ℎ 𝐴 ) ) + ( 𝐴 ·ih 𝐵 ) ) |
79 |
|
his5 |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ·ih ( 𝐶 ·ℎ 𝐴 ) ) = ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) |
80 |
5 3 3 79
|
mp3an |
⊢ ( 𝐴 ·ih ( 𝐶 ·ℎ 𝐴 ) ) = ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) |
81 |
80
|
oveq1i |
⊢ ( ( 𝐴 ·ih ( 𝐶 ·ℎ 𝐴 ) ) + ( 𝐴 ·ih 𝐵 ) ) = ( ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) + ( 𝐴 ·ih 𝐵 ) ) |
82 |
78 81
|
eqtri |
⊢ ( 𝐴 ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) + ( 𝐴 ·ih 𝐵 ) ) |
83 |
82
|
oveq2i |
⊢ ( 𝐶 · ( 𝐴 ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) = ( 𝐶 · ( ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) + ( 𝐴 ·ih 𝐵 ) ) ) |
84 |
5 59 15
|
adddii |
⊢ ( 𝐶 · ( ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) + ( 𝐴 ·ih 𝐵 ) ) ) = ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) |
85 |
76 83 84
|
3eqtri |
⊢ ( ( 𝐶 ·ℎ 𝐴 ) ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) |
86 |
|
his7 |
⊢ ( ( 𝐵 ∈ ℋ ∧ ( 𝐶 ·ℎ 𝐴 ) ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐵 ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( ( 𝐵 ·ih ( 𝐶 ·ℎ 𝐴 ) ) + ( 𝐵 ·ih 𝐵 ) ) ) |
87 |
4 64 4 86
|
mp3an |
⊢ ( 𝐵 ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( ( 𝐵 ·ih ( 𝐶 ·ℎ 𝐴 ) ) + ( 𝐵 ·ih 𝐵 ) ) |
88 |
|
his5 |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐵 ·ih ( 𝐶 ·ℎ 𝐴 ) ) = ( ( ∗ ‘ 𝐶 ) · ( 𝐵 ·ih 𝐴 ) ) ) |
89 |
5 4 3 88
|
mp3an |
⊢ ( 𝐵 ·ih ( 𝐶 ·ℎ 𝐴 ) ) = ( ( ∗ ‘ 𝐶 ) · ( 𝐵 ·ih 𝐴 ) ) |
90 |
5 15
|
cjmuli |
⊢ ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) = ( ( ∗ ‘ 𝐶 ) · ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) ) |
91 |
4 3
|
his1i |
⊢ ( 𝐵 ·ih 𝐴 ) = ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) |
92 |
91
|
oveq2i |
⊢ ( ( ∗ ‘ 𝐶 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( ∗ ‘ 𝐶 ) · ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) ) |
93 |
90 92
|
eqtr4i |
⊢ ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) = ( ( ∗ ‘ 𝐶 ) · ( 𝐵 ·ih 𝐴 ) ) |
94 |
89 93
|
eqtr4i |
⊢ ( 𝐵 ·ih ( 𝐶 ·ℎ 𝐴 ) ) = ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) |
95 |
94
|
oveq1i |
⊢ ( ( 𝐵 ·ih ( 𝐶 ·ℎ 𝐴 ) ) + ( 𝐵 ·ih 𝐵 ) ) = ( ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) |
96 |
87 95
|
eqtri |
⊢ ( 𝐵 ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) |
97 |
85 96
|
oveq12i |
⊢ ( ( ( 𝐶 ·ℎ 𝐴 ) ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) + ( 𝐵 ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) = ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) + ( ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) ) |
98 |
72 74 97
|
3eqtrri |
⊢ ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) + ( ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) ) = ( ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) |
99 |
1
|
lnopli |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) |
100 |
5 3 4 99
|
mp3an |
⊢ ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) |
101 |
100 100
|
oveq12i |
⊢ ( ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) = ( ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) |
102 |
5 8
|
hvmulcli |
⊢ ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ∈ ℋ |
103 |
102 10
|
hvaddcli |
⊢ ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ∈ ℋ |
104 |
|
ax-his2 |
⊢ ( ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ∈ ℋ ∧ ( 𝑇 ‘ 𝐵 ) ∈ ℋ ∧ ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ∈ ℋ ) → ( ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) = ( ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) ) |
105 |
102 10 103 104
|
mp3an |
⊢ ( ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) = ( ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) |
106 |
101 105
|
eqtri |
⊢ ( ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) = ( ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) |
107 |
|
ax-his3 |
⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝑇 ‘ 𝐴 ) ∈ ℋ ∧ ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ∈ ℋ ) → ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) = ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) ) |
108 |
5 8 103 107
|
mp3an |
⊢ ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) = ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) |
109 |
|
his7 |
⊢ ( ( ( 𝑇 ‘ 𝐴 ) ∈ ℋ ∧ ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ∈ ℋ ∧ ( 𝑇 ‘ 𝐵 ) ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) = ( ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) + ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) |
110 |
8 102 10 109
|
mp3an |
⊢ ( ( 𝑇 ‘ 𝐴 ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) = ( ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) + ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) |
111 |
|
his5 |
⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝑇 ‘ 𝐴 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) = ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) |
112 |
5 8 8 111
|
mp3an |
⊢ ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) = ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) |
113 |
112
|
oveq1i |
⊢ ( ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) + ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) = ( ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) + ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) |
114 |
110 113
|
eqtri |
⊢ ( ( 𝑇 ‘ 𝐴 ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) = ( ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) + ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) |
115 |
114
|
oveq2i |
⊢ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) = ( 𝐶 · ( ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) + ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) |
116 |
5 53 11
|
adddii |
⊢ ( 𝐶 · ( ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) + ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) = ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) + ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) |
117 |
108 115 116
|
3eqtri |
⊢ ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) = ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) + ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) |
118 |
|
his7 |
⊢ ( ( ( 𝑇 ‘ 𝐵 ) ∈ ℋ ∧ ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ∈ ℋ ∧ ( 𝑇 ‘ 𝐵 ) ∈ ℋ ) → ( ( 𝑇 ‘ 𝐵 ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) = ( ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) |
119 |
10 102 10 118
|
mp3an |
⊢ ( ( 𝑇 ‘ 𝐵 ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) = ( ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) |
120 |
|
his5 |
⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝑇 ‘ 𝐵 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) → ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) = ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) |
121 |
5 10 8 120
|
mp3an |
⊢ ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) = ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) |
122 |
5 11
|
cjmuli |
⊢ ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) = ( ( ∗ ‘ 𝐶 ) · ( ∗ ‘ ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) |
123 |
10 8
|
his1i |
⊢ ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ∗ ‘ ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) |
124 |
123
|
oveq2i |
⊢ ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) = ( ( ∗ ‘ 𝐶 ) · ( ∗ ‘ ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) |
125 |
122 124
|
eqtr4i |
⊢ ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) = ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) |
126 |
121 125
|
eqtr4i |
⊢ ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) = ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) |
127 |
126
|
oveq1i |
⊢ ( ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) = ( ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) |
128 |
119 127
|
eqtri |
⊢ ( ( 𝑇 ‘ 𝐵 ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) = ( ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) |
129 |
117 128
|
oveq12i |
⊢ ( ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) = ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) + ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) + ( ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) |
130 |
98 106 129
|
3eqtrri |
⊢ ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) + ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) + ( ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) = ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) + ( ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) ) |
131 |
63 130
|
eqtr4i |
⊢ ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) + ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) ) ) = ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) + ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) + ( ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) |
132 |
57 131
|
eqtr4i |
⊢ ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ) ) = ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) + ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) ) ) |
133 |
50 132
|
eqtr3i |
⊢ ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ) ) = ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) + ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) ) ) |
134 |
60 61
|
addcli |
⊢ ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ |
135 |
12 56
|
addcli |
⊢ ( ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ) ∈ ℂ |
136 |
16 62
|
addcli |
⊢ ( ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) + ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) ) ∈ ℂ |
137 |
134 135 136
|
addcani |
⊢ ( ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ) ) = ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) + ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) ) ) ↔ ( ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ) = ( ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) + ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) ) ) |
138 |
133 137
|
mpbi |
⊢ ( ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ) = ( ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) + ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) ) |
139 |
138
|
oveq1i |
⊢ ( ( ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ) / 2 ) = ( ( ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) + ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) ) / 2 ) |
140 |
18 139
|
eqtr4i |
⊢ ( ℜ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) = ( ( ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ) / 2 ) |
141 |
14 140
|
eqtr4i |
⊢ ( ℜ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) = ( ℜ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) |