| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lnopunilem.1 |
⊢ 𝑇 ∈ LinOp |
| 2 |
|
lnopunilem.2 |
⊢ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) |
| 3 |
|
lnopunilem.3 |
⊢ 𝐴 ∈ ℋ |
| 4 |
|
lnopunilem.4 |
⊢ 𝐵 ∈ ℋ |
| 5 |
|
lnopunilem1.5 |
⊢ 𝐶 ∈ ℂ |
| 6 |
1
|
lnopfi |
⊢ 𝑇 : ℋ ⟶ ℋ |
| 7 |
6
|
ffvelcdmi |
⊢ ( 𝐴 ∈ ℋ → ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) |
| 8 |
3 7
|
ax-mp |
⊢ ( 𝑇 ‘ 𝐴 ) ∈ ℋ |
| 9 |
6
|
ffvelcdmi |
⊢ ( 𝐵 ∈ ℋ → ( 𝑇 ‘ 𝐵 ) ∈ ℋ ) |
| 10 |
4 9
|
ax-mp |
⊢ ( 𝑇 ‘ 𝐵 ) ∈ ℋ |
| 11 |
8 10
|
hicli |
⊢ ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ∈ ℂ |
| 12 |
5 11
|
mulcli |
⊢ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ∈ ℂ |
| 13 |
|
reval |
⊢ ( ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ∈ ℂ → ( ℜ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) = ( ( ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ) / 2 ) ) |
| 14 |
12 13
|
ax-mp |
⊢ ( ℜ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) = ( ( ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ) / 2 ) |
| 15 |
3 4
|
hicli |
⊢ ( 𝐴 ·ih 𝐵 ) ∈ ℂ |
| 16 |
5 15
|
mulcli |
⊢ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ∈ ℂ |
| 17 |
|
reval |
⊢ ( ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ∈ ℂ → ( ℜ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) = ( ( ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) + ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) ) / 2 ) ) |
| 18 |
16 17
|
ax-mp |
⊢ ( ℜ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) = ( ( ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) + ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) ) / 2 ) |
| 19 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑦 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) |
| 20 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( normℎ ‘ 𝑥 ) = ( normℎ ‘ 𝑦 ) ) |
| 21 |
19 20
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ) ) |
| 22 |
21
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ) |
| 23 |
2 22
|
mpbi |
⊢ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) |
| 24 |
|
oveq1 |
⊢ ( ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ↑ 2 ) = ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) |
| 25 |
6
|
ffvelcdmi |
⊢ ( 𝑦 ∈ ℋ → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
| 26 |
|
normsq |
⊢ ( ( 𝑇 ‘ 𝑦 ) ∈ ℋ → ( ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ↑ 2 ) = ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
| 27 |
25 26
|
syl |
⊢ ( 𝑦 ∈ ℋ → ( ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ↑ 2 ) = ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
| 28 |
|
normsq |
⊢ ( 𝑦 ∈ ℋ → ( ( normℎ ‘ 𝑦 ) ↑ 2 ) = ( 𝑦 ·ih 𝑦 ) ) |
| 29 |
27 28
|
eqeq12d |
⊢ ( 𝑦 ∈ ℋ → ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ↑ 2 ) = ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ↔ ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑦 ·ih 𝑦 ) ) ) |
| 30 |
24 29
|
imbitrid |
⊢ ( 𝑦 ∈ ℋ → ( ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) → ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑦 ·ih 𝑦 ) ) ) |
| 31 |
30
|
ralimia |
⊢ ( ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) → ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑦 ·ih 𝑦 ) ) |
| 32 |
23 31
|
ax-mp |
⊢ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑦 ·ih 𝑦 ) |
| 33 |
|
fveq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑇 ‘ 𝑦 ) = ( 𝑇 ‘ 𝐴 ) ) |
| 34 |
33 33
|
oveq12d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) |
| 35 |
|
id |
⊢ ( 𝑦 = 𝐴 → 𝑦 = 𝐴 ) |
| 36 |
35 35
|
oveq12d |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ·ih 𝑦 ) = ( 𝐴 ·ih 𝐴 ) ) |
| 37 |
34 36
|
eqeq12d |
⊢ ( 𝑦 = 𝐴 → ( ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑦 ·ih 𝑦 ) ↔ ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) = ( 𝐴 ·ih 𝐴 ) ) ) |
| 38 |
37
|
rspcv |
⊢ ( 𝐴 ∈ ℋ → ( ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑦 ·ih 𝑦 ) → ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) = ( 𝐴 ·ih 𝐴 ) ) ) |
| 39 |
3 32 38
|
mp2 |
⊢ ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) = ( 𝐴 ·ih 𝐴 ) |
| 40 |
39
|
oveq2i |
⊢ ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) = ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) |
| 41 |
40
|
oveq2i |
⊢ ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) = ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) |
| 42 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝑇 ‘ 𝑦 ) = ( 𝑇 ‘ 𝐵 ) ) |
| 43 |
42 42
|
oveq12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) |
| 44 |
|
id |
⊢ ( 𝑦 = 𝐵 → 𝑦 = 𝐵 ) |
| 45 |
44 44
|
oveq12d |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ·ih 𝑦 ) = ( 𝐵 ·ih 𝐵 ) ) |
| 46 |
43 45
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑦 ·ih 𝑦 ) ↔ ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) = ( 𝐵 ·ih 𝐵 ) ) ) |
| 47 |
46
|
rspcv |
⊢ ( 𝐵 ∈ ℋ → ( ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑦 ·ih 𝑦 ) → ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) = ( 𝐵 ·ih 𝐵 ) ) ) |
| 48 |
4 32 47
|
mp2 |
⊢ ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) = ( 𝐵 ·ih 𝐵 ) |
| 49 |
41 48
|
oveq12i |
⊢ ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) = ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) |
| 50 |
49
|
oveq1i |
⊢ ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ) ) = ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ) ) |
| 51 |
5
|
cjcli |
⊢ ( ∗ ‘ 𝐶 ) ∈ ℂ |
| 52 |
8 8
|
hicli |
⊢ ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℂ |
| 53 |
51 52
|
mulcli |
⊢ ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∈ ℂ |
| 54 |
5 53
|
mulcli |
⊢ ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) ∈ ℂ |
| 55 |
10 10
|
hicli |
⊢ ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ∈ ℂ |
| 56 |
12
|
cjcli |
⊢ ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ∈ ℂ |
| 57 |
54 55 12 56
|
add42i |
⊢ ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ) ) = ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) + ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) + ( ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) |
| 58 |
3 3
|
hicli |
⊢ ( 𝐴 ·ih 𝐴 ) ∈ ℂ |
| 59 |
51 58
|
mulcli |
⊢ ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ∈ ℂ |
| 60 |
5 59
|
mulcli |
⊢ ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) ∈ ℂ |
| 61 |
4 4
|
hicli |
⊢ ( 𝐵 ·ih 𝐵 ) ∈ ℂ |
| 62 |
16
|
cjcli |
⊢ ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℂ |
| 63 |
60 61 16 62
|
add42i |
⊢ ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) + ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) ) ) = ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) + ( ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) ) |
| 64 |
5 3
|
hvmulcli |
⊢ ( 𝐶 ·ℎ 𝐴 ) ∈ ℋ |
| 65 |
64 4
|
hvaddcli |
⊢ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ∈ ℋ |
| 66 |
|
fveq2 |
⊢ ( 𝑦 = ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) → ( 𝑇 ‘ 𝑦 ) = ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) |
| 67 |
66 66
|
oveq12d |
⊢ ( 𝑦 = ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) → ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) ) |
| 68 |
|
id |
⊢ ( 𝑦 = ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) → 𝑦 = ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) |
| 69 |
68 68
|
oveq12d |
⊢ ( 𝑦 = ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) → ( 𝑦 ·ih 𝑦 ) = ( ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) |
| 70 |
67 69
|
eqeq12d |
⊢ ( 𝑦 = ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) → ( ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑦 ·ih 𝑦 ) ↔ ( ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) = ( ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) ) |
| 71 |
70
|
rspcv |
⊢ ( ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ∈ ℋ → ( ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑦 ·ih 𝑦 ) → ( ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) = ( ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) ) |
| 72 |
65 32 71
|
mp2 |
⊢ ( ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) = ( ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) |
| 73 |
|
ax-his2 |
⊢ ( ( ( 𝐶 ·ℎ 𝐴 ) ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ∈ ℋ ) → ( ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( ( ( 𝐶 ·ℎ 𝐴 ) ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) + ( 𝐵 ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) ) |
| 74 |
64 4 65 73
|
mp3an |
⊢ ( ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( ( ( 𝐶 ·ℎ 𝐴 ) ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) + ( 𝐵 ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) |
| 75 |
|
ax-his3 |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ∈ ℋ ) → ( ( 𝐶 ·ℎ 𝐴 ) ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( 𝐶 · ( 𝐴 ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) ) |
| 76 |
5 3 65 75
|
mp3an |
⊢ ( ( 𝐶 ·ℎ 𝐴 ) ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( 𝐶 · ( 𝐴 ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) |
| 77 |
|
his7 |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝐶 ·ℎ 𝐴 ) ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( ( 𝐴 ·ih ( 𝐶 ·ℎ 𝐴 ) ) + ( 𝐴 ·ih 𝐵 ) ) ) |
| 78 |
3 64 4 77
|
mp3an |
⊢ ( 𝐴 ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( ( 𝐴 ·ih ( 𝐶 ·ℎ 𝐴 ) ) + ( 𝐴 ·ih 𝐵 ) ) |
| 79 |
|
his5 |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ·ih ( 𝐶 ·ℎ 𝐴 ) ) = ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) |
| 80 |
5 3 3 79
|
mp3an |
⊢ ( 𝐴 ·ih ( 𝐶 ·ℎ 𝐴 ) ) = ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) |
| 81 |
80
|
oveq1i |
⊢ ( ( 𝐴 ·ih ( 𝐶 ·ℎ 𝐴 ) ) + ( 𝐴 ·ih 𝐵 ) ) = ( ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) + ( 𝐴 ·ih 𝐵 ) ) |
| 82 |
78 81
|
eqtri |
⊢ ( 𝐴 ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) + ( 𝐴 ·ih 𝐵 ) ) |
| 83 |
82
|
oveq2i |
⊢ ( 𝐶 · ( 𝐴 ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) = ( 𝐶 · ( ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) + ( 𝐴 ·ih 𝐵 ) ) ) |
| 84 |
5 59 15
|
adddii |
⊢ ( 𝐶 · ( ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) + ( 𝐴 ·ih 𝐵 ) ) ) = ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) |
| 85 |
76 83 84
|
3eqtri |
⊢ ( ( 𝐶 ·ℎ 𝐴 ) ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) |
| 86 |
|
his7 |
⊢ ( ( 𝐵 ∈ ℋ ∧ ( 𝐶 ·ℎ 𝐴 ) ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐵 ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( ( 𝐵 ·ih ( 𝐶 ·ℎ 𝐴 ) ) + ( 𝐵 ·ih 𝐵 ) ) ) |
| 87 |
4 64 4 86
|
mp3an |
⊢ ( 𝐵 ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( ( 𝐵 ·ih ( 𝐶 ·ℎ 𝐴 ) ) + ( 𝐵 ·ih 𝐵 ) ) |
| 88 |
|
his5 |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐵 ·ih ( 𝐶 ·ℎ 𝐴 ) ) = ( ( ∗ ‘ 𝐶 ) · ( 𝐵 ·ih 𝐴 ) ) ) |
| 89 |
5 4 3 88
|
mp3an |
⊢ ( 𝐵 ·ih ( 𝐶 ·ℎ 𝐴 ) ) = ( ( ∗ ‘ 𝐶 ) · ( 𝐵 ·ih 𝐴 ) ) |
| 90 |
5 15
|
cjmuli |
⊢ ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) = ( ( ∗ ‘ 𝐶 ) · ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) ) |
| 91 |
4 3
|
his1i |
⊢ ( 𝐵 ·ih 𝐴 ) = ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) |
| 92 |
91
|
oveq2i |
⊢ ( ( ∗ ‘ 𝐶 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( ∗ ‘ 𝐶 ) · ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) ) |
| 93 |
90 92
|
eqtr4i |
⊢ ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) = ( ( ∗ ‘ 𝐶 ) · ( 𝐵 ·ih 𝐴 ) ) |
| 94 |
89 93
|
eqtr4i |
⊢ ( 𝐵 ·ih ( 𝐶 ·ℎ 𝐴 ) ) = ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) |
| 95 |
94
|
oveq1i |
⊢ ( ( 𝐵 ·ih ( 𝐶 ·ℎ 𝐴 ) ) + ( 𝐵 ·ih 𝐵 ) ) = ( ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) |
| 96 |
87 95
|
eqtri |
⊢ ( 𝐵 ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) |
| 97 |
85 96
|
oveq12i |
⊢ ( ( ( 𝐶 ·ℎ 𝐴 ) ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) + ( 𝐵 ·ih ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) = ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) + ( ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) ) |
| 98 |
72 74 97
|
3eqtrri |
⊢ ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) + ( ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) ) = ( ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) |
| 99 |
1
|
lnopli |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) |
| 100 |
5 3 4 99
|
mp3an |
⊢ ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) |
| 101 |
100 100
|
oveq12i |
⊢ ( ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) = ( ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) |
| 102 |
5 8
|
hvmulcli |
⊢ ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ∈ ℋ |
| 103 |
102 10
|
hvaddcli |
⊢ ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ∈ ℋ |
| 104 |
|
ax-his2 |
⊢ ( ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ∈ ℋ ∧ ( 𝑇 ‘ 𝐵 ) ∈ ℋ ∧ ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ∈ ℋ ) → ( ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) = ( ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) ) |
| 105 |
102 10 103 104
|
mp3an |
⊢ ( ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) = ( ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) |
| 106 |
101 105
|
eqtri |
⊢ ( ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( ( 𝐶 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) ) = ( ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) |
| 107 |
|
ax-his3 |
⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝑇 ‘ 𝐴 ) ∈ ℋ ∧ ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ∈ ℋ ) → ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) = ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) ) |
| 108 |
5 8 103 107
|
mp3an |
⊢ ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) = ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) |
| 109 |
|
his7 |
⊢ ( ( ( 𝑇 ‘ 𝐴 ) ∈ ℋ ∧ ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ∈ ℋ ∧ ( 𝑇 ‘ 𝐵 ) ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) = ( ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) + ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) |
| 110 |
8 102 10 109
|
mp3an |
⊢ ( ( 𝑇 ‘ 𝐴 ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) = ( ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) + ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) |
| 111 |
|
his5 |
⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝑇 ‘ 𝐴 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) = ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 112 |
5 8 8 111
|
mp3an |
⊢ ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) = ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) |
| 113 |
112
|
oveq1i |
⊢ ( ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) + ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) = ( ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) + ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) |
| 114 |
110 113
|
eqtri |
⊢ ( ( 𝑇 ‘ 𝐴 ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) = ( ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) + ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) |
| 115 |
114
|
oveq2i |
⊢ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) = ( 𝐶 · ( ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) + ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) |
| 116 |
5 53 11
|
adddii |
⊢ ( 𝐶 · ( ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) + ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) = ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) + ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) |
| 117 |
108 115 116
|
3eqtri |
⊢ ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) = ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) + ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) |
| 118 |
|
his7 |
⊢ ( ( ( 𝑇 ‘ 𝐵 ) ∈ ℋ ∧ ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ∈ ℋ ∧ ( 𝑇 ‘ 𝐵 ) ∈ ℋ ) → ( ( 𝑇 ‘ 𝐵 ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) = ( ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) |
| 119 |
10 102 10 118
|
mp3an |
⊢ ( ( 𝑇 ‘ 𝐵 ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) = ( ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) |
| 120 |
|
his5 |
⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝑇 ‘ 𝐵 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) → ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) = ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 121 |
5 10 8 120
|
mp3an |
⊢ ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) = ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) |
| 122 |
5 11
|
cjmuli |
⊢ ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) = ( ( ∗ ‘ 𝐶 ) · ( ∗ ‘ ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) |
| 123 |
10 8
|
his1i |
⊢ ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ∗ ‘ ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) |
| 124 |
123
|
oveq2i |
⊢ ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) = ( ( ∗ ‘ 𝐶 ) · ( ∗ ‘ ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) |
| 125 |
122 124
|
eqtr4i |
⊢ ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) = ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) |
| 126 |
121 125
|
eqtr4i |
⊢ ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) = ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) |
| 127 |
126
|
oveq1i |
⊢ ( ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) = ( ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) |
| 128 |
119 127
|
eqtri |
⊢ ( ( 𝑇 ‘ 𝐵 ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) = ( ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) |
| 129 |
117 128
|
oveq12i |
⊢ ( ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( ( 𝐶 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) = ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) + ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) + ( ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) |
| 130 |
98 106 129
|
3eqtrri |
⊢ ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) + ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) + ( ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) = ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) + ( ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) ) |
| 131 |
63 130
|
eqtr4i |
⊢ ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) + ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) ) ) = ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) + ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) + ( ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) |
| 132 |
57 131
|
eqtr4i |
⊢ ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) + ( ( 𝑇 ‘ 𝐵 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ) ) = ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) + ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) ) ) |
| 133 |
50 132
|
eqtr3i |
⊢ ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ) ) = ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) + ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) ) ) |
| 134 |
60 61
|
addcli |
⊢ ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ |
| 135 |
12 56
|
addcli |
⊢ ( ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ) ∈ ℂ |
| 136 |
16 62
|
addcli |
⊢ ( ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) + ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) ) ∈ ℂ |
| 137 |
134 135 136
|
addcani |
⊢ ( ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ) ) = ( ( ( 𝐶 · ( ( ∗ ‘ 𝐶 ) · ( 𝐴 ·ih 𝐴 ) ) ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) + ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) ) ) ↔ ( ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ) = ( ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) + ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) ) ) |
| 138 |
133 137
|
mpbi |
⊢ ( ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ) = ( ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) + ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) ) |
| 139 |
138
|
oveq1i |
⊢ ( ( ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ) / 2 ) = ( ( ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) + ( ∗ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) ) / 2 ) |
| 140 |
18 139
|
eqtr4i |
⊢ ( ℜ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) = ( ( ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) + ( ∗ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ) / 2 ) |
| 141 |
14 140
|
eqtr4i |
⊢ ( ℜ ‘ ( 𝐶 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) = ( ℜ ‘ ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) |