Step |
Hyp |
Ref |
Expression |
1 |
|
lnopunilem.1 |
⊢ 𝑇 ∈ LinOp |
2 |
|
lnopunilem.2 |
⊢ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) = ( normℎ ‘ 𝑥 ) |
3 |
|
lnopunilem.3 |
⊢ 𝐴 ∈ ℋ |
4 |
|
lnopunilem.4 |
⊢ 𝐵 ∈ ℋ |
5 |
|
fvoveq1 |
⊢ ( 𝑦 = if ( 𝑦 ∈ ℂ , 𝑦 , 0 ) → ( ℜ ‘ ( 𝑦 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) = ( ℜ ‘ ( if ( 𝑦 ∈ ℂ , 𝑦 , 0 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) ) |
6 |
|
fvoveq1 |
⊢ ( 𝑦 = if ( 𝑦 ∈ ℂ , 𝑦 , 0 ) → ( ℜ ‘ ( 𝑦 · ( 𝐴 ·ih 𝐵 ) ) ) = ( ℜ ‘ ( if ( 𝑦 ∈ ℂ , 𝑦 , 0 ) · ( 𝐴 ·ih 𝐵 ) ) ) ) |
7 |
5 6
|
eqeq12d |
⊢ ( 𝑦 = if ( 𝑦 ∈ ℂ , 𝑦 , 0 ) → ( ( ℜ ‘ ( 𝑦 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) = ( ℜ ‘ ( 𝑦 · ( 𝐴 ·ih 𝐵 ) ) ) ↔ ( ℜ ‘ ( if ( 𝑦 ∈ ℂ , 𝑦 , 0 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) = ( ℜ ‘ ( if ( 𝑦 ∈ ℂ , 𝑦 , 0 ) · ( 𝐴 ·ih 𝐵 ) ) ) ) ) |
8 |
|
0cn |
⊢ 0 ∈ ℂ |
9 |
8
|
elimel |
⊢ if ( 𝑦 ∈ ℂ , 𝑦 , 0 ) ∈ ℂ |
10 |
1 2 3 4 9
|
lnopunilem1 |
⊢ ( ℜ ‘ ( if ( 𝑦 ∈ ℂ , 𝑦 , 0 ) · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) = ( ℜ ‘ ( if ( 𝑦 ∈ ℂ , 𝑦 , 0 ) · ( 𝐴 ·ih 𝐵 ) ) ) |
11 |
7 10
|
dedth |
⊢ ( 𝑦 ∈ ℂ → ( ℜ ‘ ( 𝑦 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) = ( ℜ ‘ ( 𝑦 · ( 𝐴 ·ih 𝐵 ) ) ) ) |
12 |
11
|
rgen |
⊢ ∀ 𝑦 ∈ ℂ ( ℜ ‘ ( 𝑦 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) = ( ℜ ‘ ( 𝑦 · ( 𝐴 ·ih 𝐵 ) ) ) |
13 |
1
|
lnopfi |
⊢ 𝑇 : ℋ ⟶ ℋ |
14 |
13
|
ffvelrni |
⊢ ( 𝐴 ∈ ℋ → ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) |
15 |
3 14
|
ax-mp |
⊢ ( 𝑇 ‘ 𝐴 ) ∈ ℋ |
16 |
13
|
ffvelrni |
⊢ ( 𝐵 ∈ ℋ → ( 𝑇 ‘ 𝐵 ) ∈ ℋ ) |
17 |
4 16
|
ax-mp |
⊢ ( 𝑇 ‘ 𝐵 ) ∈ ℋ |
18 |
15 17
|
hicli |
⊢ ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ∈ ℂ |
19 |
3 4
|
hicli |
⊢ ( 𝐴 ·ih 𝐵 ) ∈ ℂ |
20 |
|
recan |
⊢ ( ( ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ∈ ℂ ∧ ( 𝐴 ·ih 𝐵 ) ∈ ℂ ) → ( ∀ 𝑦 ∈ ℂ ( ℜ ‘ ( 𝑦 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) = ( ℜ ‘ ( 𝑦 · ( 𝐴 ·ih 𝐵 ) ) ) ↔ ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) = ( 𝐴 ·ih 𝐵 ) ) ) |
21 |
18 19 20
|
mp2an |
⊢ ( ∀ 𝑦 ∈ ℂ ( ℜ ‘ ( 𝑦 · ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) ) = ( ℜ ‘ ( 𝑦 · ( 𝐴 ·ih 𝐵 ) ) ) ↔ ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) = ( 𝐴 ·ih 𝐵 ) ) |
22 |
12 21
|
mpbi |
⊢ ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) = ( 𝐴 ·ih 𝐵 ) |