Step |
Hyp |
Ref |
Expression |
1 |
|
lmiopp.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
lmiopp.m |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
lmiopp.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
lmiopp.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
lmiopp.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
6 |
|
lmiopp.h |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
7 |
|
lmiopp.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
8 |
|
lmiopp.o |
⊢ 𝑂 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } |
9 |
|
lnperpex.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) |
10 |
|
lnperpex.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝑃 ) |
11 |
|
lnperpex.1 |
⊢ ( 𝜑 → ¬ 𝑄 ∈ 𝐷 ) |
12 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) → 𝐺 ∈ TarskiG ) |
13 |
12
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) ∧ ( 𝑝 ∈ 𝑃 ∧ ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷 ∧ 𝑐 𝑂 𝑝 ) ) ) → 𝐺 ∈ TarskiG ) |
14 |
|
simprl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) ∧ ( 𝑝 ∈ 𝑃 ∧ ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷 ∧ 𝑐 𝑂 𝑝 ) ) ) → 𝑝 ∈ 𝑃 ) |
15 |
1 4 3 5 7 9
|
tglnpt |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
16 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) → 𝐴 ∈ 𝑃 ) |
17 |
16
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) ∧ ( 𝑝 ∈ 𝑃 ∧ ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷 ∧ 𝑐 𝑂 𝑝 ) ) ) → 𝐴 ∈ 𝑃 ) |
18 |
|
simprrl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) ∧ ( 𝑝 ∈ 𝑃 ∧ ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷 ∧ 𝑐 𝑂 𝑝 ) ) ) → ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) |
19 |
4 13 18
|
perpln1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) ∧ ( 𝑝 ∈ 𝑃 ∧ ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷 ∧ 𝑐 𝑂 𝑝 ) ) ) → ( 𝐴 𝐿 𝑝 ) ∈ ran 𝐿 ) |
20 |
1 3 4 13 17 14 19
|
tglnne |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) ∧ ( 𝑝 ∈ 𝑃 ∧ ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷 ∧ 𝑐 𝑂 𝑝 ) ) ) → 𝐴 ≠ 𝑝 ) |
21 |
20
|
necomd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) ∧ ( 𝑝 ∈ 𝑃 ∧ ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷 ∧ 𝑐 𝑂 𝑝 ) ) ) → 𝑝 ≠ 𝐴 ) |
22 |
1 3 4 13 14 17 21
|
tgelrnln |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) ∧ ( 𝑝 ∈ 𝑃 ∧ ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷 ∧ 𝑐 𝑂 𝑝 ) ) ) → ( 𝑝 𝐿 𝐴 ) ∈ ran 𝐿 ) |
23 |
7
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) → 𝐷 ∈ ran 𝐿 ) |
24 |
23
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) ∧ ( 𝑝 ∈ 𝑃 ∧ ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷 ∧ 𝑐 𝑂 𝑝 ) ) ) → 𝐷 ∈ ran 𝐿 ) |
25 |
1 3 4 13 14 17 21
|
tglinecom |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) ∧ ( 𝑝 ∈ 𝑃 ∧ ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷 ∧ 𝑐 𝑂 𝑝 ) ) ) → ( 𝑝 𝐿 𝐴 ) = ( 𝐴 𝐿 𝑝 ) ) |
26 |
25 18
|
eqbrtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) ∧ ( 𝑝 ∈ 𝑃 ∧ ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷 ∧ 𝑐 𝑂 𝑝 ) ) ) → ( 𝑝 𝐿 𝐴 ) ( ⟂G ‘ 𝐺 ) 𝐷 ) |
27 |
1 2 3 4 13 22 24 26
|
perpcom |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) ∧ ( 𝑝 ∈ 𝑃 ∧ ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷 ∧ 𝑐 𝑂 𝑝 ) ) ) → 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝑝 𝐿 𝐴 ) ) |
28 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) ∧ ( 𝑝 ∈ 𝑃 ∧ ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷 ∧ 𝑐 𝑂 𝑝 ) ) ) → 𝑄 𝑂 𝑐 ) |
29 |
10
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) → 𝑄 ∈ 𝑃 ) |
30 |
29
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) ∧ ( 𝑝 ∈ 𝑃 ∧ ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷 ∧ 𝑐 𝑂 𝑝 ) ) ) → 𝑄 ∈ 𝑃 ) |
31 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) → 𝑐 ∈ 𝑃 ) |
32 |
31
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) ∧ ( 𝑝 ∈ 𝑃 ∧ ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷 ∧ 𝑐 𝑂 𝑝 ) ) ) → 𝑐 ∈ 𝑃 ) |
33 |
|
simprrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) ∧ ( 𝑝 ∈ 𝑃 ∧ ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷 ∧ 𝑐 𝑂 𝑝 ) ) ) → 𝑐 𝑂 𝑝 ) |
34 |
1 2 3 8 4 24 13 32 14 33
|
oppcom |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) ∧ ( 𝑝 ∈ 𝑃 ∧ ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷 ∧ 𝑐 𝑂 𝑝 ) ) ) → 𝑝 𝑂 𝑐 ) |
35 |
1 3 4 8 13 24 14 30 32 34
|
lnopp2hpgb |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) ∧ ( 𝑝 ∈ 𝑃 ∧ ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷 ∧ 𝑐 𝑂 𝑝 ) ) ) → ( 𝑄 𝑂 𝑐 ↔ 𝑝 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝑄 ) ) |
36 |
28 35
|
mpbid |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) ∧ ( 𝑝 ∈ 𝑃 ∧ ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷 ∧ 𝑐 𝑂 𝑝 ) ) ) → 𝑝 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝑄 ) |
37 |
27 36
|
jca |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) ∧ ( 𝑝 ∈ 𝑃 ∧ ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷 ∧ 𝑐 𝑂 𝑝 ) ) ) → ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝑝 𝐿 𝐴 ) ∧ 𝑝 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝑄 ) ) |
38 |
|
eqid |
⊢ ( hlG ‘ 𝐺 ) = ( hlG ‘ 𝐺 ) |
39 |
9
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) → 𝐴 ∈ 𝐷 ) |
40 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) → 𝑄 𝑂 𝑐 ) |
41 |
1 2 3 8 4 23 12 29 31 40
|
oppne2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) → ¬ 𝑐 ∈ 𝐷 ) |
42 |
6
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) → 𝐺 DimTarskiG≥ 2 ) |
43 |
1 2 3 8 4 23 12 38 39 31 41 42
|
oppperpex |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) → ∃ 𝑝 ∈ 𝑃 ( ( 𝐴 𝐿 𝑝 ) ( ⟂G ‘ 𝐺 ) 𝐷 ∧ 𝑐 𝑂 𝑝 ) ) |
44 |
37 43
|
reximddv |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑄 𝑂 𝑐 ) → ∃ 𝑝 ∈ 𝑃 ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝑝 𝐿 𝐴 ) ∧ 𝑝 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝑄 ) ) |
45 |
1 3 4 5 7 10 8 11
|
hpgerlem |
⊢ ( 𝜑 → ∃ 𝑐 ∈ 𝑃 𝑄 𝑂 𝑐 ) |
46 |
45
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) → ∃ 𝑐 ∈ 𝑃 𝑄 𝑂 𝑐 ) |
47 |
44 46
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ 𝐴 ≠ 𝑑 ) → ∃ 𝑝 ∈ 𝑃 ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝑝 𝐿 𝐴 ) ∧ 𝑝 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝑄 ) ) |
48 |
1 3 4 5 7 9
|
tglnpt2 |
⊢ ( 𝜑 → ∃ 𝑑 ∈ 𝐷 𝐴 ≠ 𝑑 ) |
49 |
47 48
|
r19.29a |
⊢ ( 𝜑 → ∃ 𝑝 ∈ 𝑃 ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝑝 𝐿 𝐴 ) ∧ 𝑝 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝑄 ) ) |