Step |
Hyp |
Ref |
Expression |
1 |
|
lnr2i.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
2 |
|
lnr2i.n |
⊢ 𝑁 = ( RSpan ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
4 |
3 1 2
|
islnr2 |
⊢ ( 𝑅 ∈ LNoeR ↔ ( 𝑅 ∈ Ring ∧ ∀ 𝑖 ∈ 𝑈 ∃ 𝑔 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) 𝑖 = ( 𝑁 ‘ 𝑔 ) ) ) |
5 |
4
|
simprbi |
⊢ ( 𝑅 ∈ LNoeR → ∀ 𝑖 ∈ 𝑈 ∃ 𝑔 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) 𝑖 = ( 𝑁 ‘ 𝑔 ) ) |
6 |
|
eqeq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 = ( 𝑁 ‘ 𝑔 ) ↔ 𝐼 = ( 𝑁 ‘ 𝑔 ) ) ) |
7 |
6
|
rexbidv |
⊢ ( 𝑖 = 𝐼 → ( ∃ 𝑔 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) 𝑖 = ( 𝑁 ‘ 𝑔 ) ↔ ∃ 𝑔 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) 𝐼 = ( 𝑁 ‘ 𝑔 ) ) ) |
8 |
7
|
rspcva |
⊢ ( ( 𝐼 ∈ 𝑈 ∧ ∀ 𝑖 ∈ 𝑈 ∃ 𝑔 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) 𝑖 = ( 𝑁 ‘ 𝑔 ) ) → ∃ 𝑔 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) 𝐼 = ( 𝑁 ‘ 𝑔 ) ) |
9 |
5 8
|
sylan2 |
⊢ ( ( 𝐼 ∈ 𝑈 ∧ 𝑅 ∈ LNoeR ) → ∃ 𝑔 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) 𝐼 = ( 𝑁 ‘ 𝑔 ) ) |
10 |
9
|
ancoms |
⊢ ( ( 𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈 ) → ∃ 𝑔 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) 𝐼 = ( 𝑁 ‘ 𝑔 ) ) |
11 |
|
lnrring |
⊢ ( 𝑅 ∈ LNoeR → 𝑅 ∈ Ring ) |
12 |
2 3
|
rspssid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑔 ⊆ ( Base ‘ 𝑅 ) ) → 𝑔 ⊆ ( 𝑁 ‘ 𝑔 ) ) |
13 |
11 12
|
sylan |
⊢ ( ( 𝑅 ∈ LNoeR ∧ 𝑔 ⊆ ( Base ‘ 𝑅 ) ) → 𝑔 ⊆ ( 𝑁 ‘ 𝑔 ) ) |
14 |
13
|
ex |
⊢ ( 𝑅 ∈ LNoeR → ( 𝑔 ⊆ ( Base ‘ 𝑅 ) → 𝑔 ⊆ ( 𝑁 ‘ 𝑔 ) ) ) |
15 |
|
vex |
⊢ 𝑔 ∈ V |
16 |
15
|
elpw |
⊢ ( 𝑔 ∈ 𝒫 ( Base ‘ 𝑅 ) ↔ 𝑔 ⊆ ( Base ‘ 𝑅 ) ) |
17 |
15
|
elpw |
⊢ ( 𝑔 ∈ 𝒫 ( 𝑁 ‘ 𝑔 ) ↔ 𝑔 ⊆ ( 𝑁 ‘ 𝑔 ) ) |
18 |
14 16 17
|
3imtr4g |
⊢ ( 𝑅 ∈ LNoeR → ( 𝑔 ∈ 𝒫 ( Base ‘ 𝑅 ) → 𝑔 ∈ 𝒫 ( 𝑁 ‘ 𝑔 ) ) ) |
19 |
18
|
anim1d |
⊢ ( 𝑅 ∈ LNoeR → ( ( 𝑔 ∈ 𝒫 ( Base ‘ 𝑅 ) ∧ 𝑔 ∈ Fin ) → ( 𝑔 ∈ 𝒫 ( 𝑁 ‘ 𝑔 ) ∧ 𝑔 ∈ Fin ) ) ) |
20 |
|
elin |
⊢ ( 𝑔 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) ↔ ( 𝑔 ∈ 𝒫 ( Base ‘ 𝑅 ) ∧ 𝑔 ∈ Fin ) ) |
21 |
|
elin |
⊢ ( 𝑔 ∈ ( 𝒫 ( 𝑁 ‘ 𝑔 ) ∩ Fin ) ↔ ( 𝑔 ∈ 𝒫 ( 𝑁 ‘ 𝑔 ) ∧ 𝑔 ∈ Fin ) ) |
22 |
19 20 21
|
3imtr4g |
⊢ ( 𝑅 ∈ LNoeR → ( 𝑔 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) → 𝑔 ∈ ( 𝒫 ( 𝑁 ‘ 𝑔 ) ∩ Fin ) ) ) |
23 |
|
pweq |
⊢ ( 𝐼 = ( 𝑁 ‘ 𝑔 ) → 𝒫 𝐼 = 𝒫 ( 𝑁 ‘ 𝑔 ) ) |
24 |
23
|
ineq1d |
⊢ ( 𝐼 = ( 𝑁 ‘ 𝑔 ) → ( 𝒫 𝐼 ∩ Fin ) = ( 𝒫 ( 𝑁 ‘ 𝑔 ) ∩ Fin ) ) |
25 |
24
|
eleq2d |
⊢ ( 𝐼 = ( 𝑁 ‘ 𝑔 ) → ( 𝑔 ∈ ( 𝒫 𝐼 ∩ Fin ) ↔ 𝑔 ∈ ( 𝒫 ( 𝑁 ‘ 𝑔 ) ∩ Fin ) ) ) |
26 |
25
|
imbi2d |
⊢ ( 𝐼 = ( 𝑁 ‘ 𝑔 ) → ( ( 𝑔 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) → 𝑔 ∈ ( 𝒫 𝐼 ∩ Fin ) ) ↔ ( 𝑔 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) → 𝑔 ∈ ( 𝒫 ( 𝑁 ‘ 𝑔 ) ∩ Fin ) ) ) ) |
27 |
22 26
|
syl5ibrcom |
⊢ ( 𝑅 ∈ LNoeR → ( 𝐼 = ( 𝑁 ‘ 𝑔 ) → ( 𝑔 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) → 𝑔 ∈ ( 𝒫 𝐼 ∩ Fin ) ) ) ) |
28 |
27
|
imdistand |
⊢ ( 𝑅 ∈ LNoeR → ( ( 𝐼 = ( 𝑁 ‘ 𝑔 ) ∧ 𝑔 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) ) → ( 𝐼 = ( 𝑁 ‘ 𝑔 ) ∧ 𝑔 ∈ ( 𝒫 𝐼 ∩ Fin ) ) ) ) |
29 |
|
ancom |
⊢ ( ( 𝑔 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) ∧ 𝐼 = ( 𝑁 ‘ 𝑔 ) ) ↔ ( 𝐼 = ( 𝑁 ‘ 𝑔 ) ∧ 𝑔 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) ) ) |
30 |
|
ancom |
⊢ ( ( 𝑔 ∈ ( 𝒫 𝐼 ∩ Fin ) ∧ 𝐼 = ( 𝑁 ‘ 𝑔 ) ) ↔ ( 𝐼 = ( 𝑁 ‘ 𝑔 ) ∧ 𝑔 ∈ ( 𝒫 𝐼 ∩ Fin ) ) ) |
31 |
28 29 30
|
3imtr4g |
⊢ ( 𝑅 ∈ LNoeR → ( ( 𝑔 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) ∧ 𝐼 = ( 𝑁 ‘ 𝑔 ) ) → ( 𝑔 ∈ ( 𝒫 𝐼 ∩ Fin ) ∧ 𝐼 = ( 𝑁 ‘ 𝑔 ) ) ) ) |
32 |
31
|
reximdv2 |
⊢ ( 𝑅 ∈ LNoeR → ( ∃ 𝑔 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) 𝐼 = ( 𝑁 ‘ 𝑔 ) → ∃ 𝑔 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐼 = ( 𝑁 ‘ 𝑔 ) ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈 ) → ( ∃ 𝑔 ∈ ( 𝒫 ( Base ‘ 𝑅 ) ∩ Fin ) 𝐼 = ( 𝑁 ‘ 𝑔 ) → ∃ 𝑔 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐼 = ( 𝑁 ‘ 𝑔 ) ) ) |
34 |
10 33
|
mpd |
⊢ ( ( 𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈 ) → ∃ 𝑔 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐼 = ( 𝑁 ‘ 𝑔 ) ) |