Metamath Proof Explorer


Theorem lnrlnm

Description: Left-Noetherian rings have Noetherian associated modules. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Assertion lnrlnm ( 𝐴 ∈ LNoeR → ( ringLMod ‘ 𝐴 ) ∈ LNoeM )

Proof

Step Hyp Ref Expression
1 islnr ( 𝐴 ∈ LNoeR ↔ ( 𝐴 ∈ Ring ∧ ( ringLMod ‘ 𝐴 ) ∈ LNoeM ) )
2 1 simprbi ( 𝐴 ∈ LNoeR → ( ringLMod ‘ 𝐴 ) ∈ LNoeM )