Metamath Proof Explorer


Theorem lo1bdd

Description: The defining property of an eventually upper bounded function. (Contributed by Mario Carneiro, 26-May-2016)

Ref Expression
Assertion lo1bdd ( ( 𝐹 ∈ ≤𝑂(1) ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ 𝑚 ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐹 ∈ ≤𝑂(1) ∧ 𝐹 : 𝐴 ⟶ ℝ ) → 𝐹 ∈ ≤𝑂(1) )
2 simpr ( ( 𝐹 ∈ ≤𝑂(1) ∧ 𝐹 : 𝐴 ⟶ ℝ ) → 𝐹 : 𝐴 ⟶ ℝ )
3 fdm ( 𝐹 : 𝐴 ⟶ ℝ → dom 𝐹 = 𝐴 )
4 3 adantl ( ( 𝐹 ∈ ≤𝑂(1) ∧ 𝐹 : 𝐴 ⟶ ℝ ) → dom 𝐹 = 𝐴 )
5 lo1dm ( 𝐹 ∈ ≤𝑂(1) → dom 𝐹 ⊆ ℝ )
6 5 adantr ( ( 𝐹 ∈ ≤𝑂(1) ∧ 𝐹 : 𝐴 ⟶ ℝ ) → dom 𝐹 ⊆ ℝ )
7 4 6 eqsstrrd ( ( 𝐹 ∈ ≤𝑂(1) ∧ 𝐹 : 𝐴 ⟶ ℝ ) → 𝐴 ⊆ ℝ )
8 ello12 ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( 𝐹 ∈ ≤𝑂(1) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ 𝑚 ) ) )
9 2 7 8 syl2anc ( ( 𝐹 ∈ ≤𝑂(1) ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( 𝐹 ∈ ≤𝑂(1) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ 𝑚 ) ) )
10 1 9 mpbid ( ( 𝐹 ∈ ≤𝑂(1) ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ 𝑚 ) )